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Abstract—Weaddress the problem of ground-to-satellite image geo-localization, that is, estimating the camera latitude, longitude and

orientation (azimuth angle) bymatching a query image captured at the ground level against a large-scale databasewith geotagged

satellite images. Our prior arts treat the above task as pure image retrieval by selecting themost similar satellite reference imagematching

the ground-level query image. However, such an approach often produces coarse location estimates because the geotag of the retrieved

satellite image only corresponds to the image center while the ground camera can be located at any point within the image. To further

consolidate our prior research finding, we present a novel geometry-aware geo-localizationmethod.Our newmethod is able to achieve the

fine-grained location of a query image, up to pixel size precision of the satellite image, once its coarse location and orientation have been

determined. Moreover, we propose a new geometry-aware image retrieval pipeline to improve the coarse localization accuracy. Apart from

a polar transform in our conferencework, this new pipeline alsomaps satellite image pixels to the ground-level plane in the ground-view via

a geometry-constrained projective transform to emphasize informative regions, such as road structures, for cross-view geo-localization.

Extensive quantitative and qualitative experiments demonstrate the effectiveness of our newly proposed framework.We also significantly

improve the performance of coarse localization results compared to the state-of-the-art in terms of location recalls.

Index Terms—Camera geo-localization, cross-view matching, street-view, satellite imagery, geotagging

Ç

1 INTRODUCTION

GIVEN an image captured by a camera at the ground level
in some large open space, estimating the camera posi-

tion and the direction it faces is a useful but also challenging
problem. This paper addresses the problem of ground-to-
satellite image geo-localization which aims to determine the
geographical location and azimuth angle of a query image
by matching it against a large geo-tagged satellite map cov-
ering the region. Due to the accessibility and extensive cov-
erage of satellite imagery, the problem of ground-to-satellite
image alignment has been recently noted by researchers as
it can feature in a number of computer vision applications
e.g., autonomous driving, robot navigation, and way-find-
ing in augmented/virtual reality.

Conventional methods for solving this task often formu-
late the problem as image retrieval (e.g., [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]). They do so by first partitioning a large
satellite map to smaller satellite images, to form the refer-
ence database. Once a ground-view query image is pro-
vided, they compare the query image with the database
images to retrieve the most similar one, as shown in Fig. 1a.
The gps-tag of the matched satellite image is then used to
approximate the location of the query image location. How-
ever, oftentimes the geo-tag of the retrieved satellite image
corresponds to the centre of the retrieved satellite image
from the database, while the true ground camera location
can be rather off. Therefore, camera locations estimated by
these methods are rather coarse and inaccurate.

To address this problem, we introduce a new two-stage
mechanism for accurate 3-DoF (latitude, longitude, and azimuth
angle) camera geo-localization in this paper. First, we estimate a
coarse camera location by searching themost similar satellite
image from the database (Fig. 1a). Subsequently, we com-
pute the displacement between the center of the retrieved
satellite image and the inquired camera location, achieving
fine-grained localization results (Fig. 1b). The orientation
alignment (azimuth angle) between the ground and satellite
images is estimated in both steps.

At the coarse camera localization stage, we extend the
method proposed in our previous work [10]. Apart from a
polar transform (Fig. 2b) that roughly bridges the cross-
view domain gap, we develop a projective transform in this
work to establish geometrically constrained correspond-
ences (Fig. 2c) between the satellite (Fig. 2a) and ground-
level (Fig. 2d) images for scene objects on the ground plane.
Both the polar-transformed and projective-transformed sat-
ellite images are used in our coarse localization pipeline.
The former preserves all details from the original satellite
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image while the latter exhibits better visual similarity to the
captured ground-level scenes. Then, we employ CNNs to
learn feature correspondences between ground-level and
transformed satellite images. After satellite images are pro-
jected to the corresponding pixels in the ground-level coor-
dinate system, the spatial layout gap between ground and
satellite images is significantly reduced. Following our prior
works [10], we opt to extract feature volumes as our global
descriptors to encode discriminative spatial information.

We note that for both the polar and projective transforms,
the horizontal axis corresponds to the azimuth direction. We
thus propose a Dynamic Similarity Matching (DSM) module
to estimate the orientation of ground images with respect to
satellite images. Specifically, DSM computes the correlation
between the ground and satellite features in order to generate
a similarity score at each angle, denoted by the red curve in
Fig. 4. The argument of the similarity score maximum corre-
sponds to the latent orientation of the ground image with
respect to the satellite image. If the ground image has
restricted FoV, we then extract the appropriate local region
from the satellite feature representation for the use in the
coarse localization stage. The output of our coarse localization

stage is the satellite image that is the most similar to the query
image in the database.

Considering the displacement between the ground camera
and the satellite image center, this article further introduces a
fine-grained camera localization stage to localize a fine-
grained position of the query ground image. Specifically, we
project the satellite image to the ground viewpoint at a prede-
termined set of points of projection, as shown in Fig. 1a. The
similarity between the projective-transformed satellite images
and the query image is then computed in the same way as in
the coarse matching stage. The center of projection of the pro-
jective-transformed satellite image that is most similar to the
query ground image is taken as the camera location, and the
computed relative orientation is taken as the camera azimuth
angle. In particular, the precision of the localization result
depends on the density of the sampled centers of projection,
whereas the precision of the orientation estimation depends
on the resolution of the images and the FoV.

Below, we detail novel contributions of this manuscript
which are not explored in our earlier work.

i. Compared to previous methods which formulate the
cross-view image-based geo-localization as a pure
image retrieval task, this article introduces a new
fine-grained localization method to compute the dis-
placement between the retrieved satellite image cen-
ter and the query ground camera location.

ii. We further extend our conference work [10] for
coarse camera localization. Apart from the polar
transform introduced in our conference work, this
article proposes a geometry-constrained projective
transform to establish more realistic geometric corre-
spondences of points on the ground plane between
satellite and ground-level images. This allows our
network to focus on informative regions for cross-
view image matching.

iii. We achieve new state-of-the-art cross-view localiza-
tion performance compared to our conference
work. Moreover, we analyze and discuss the differ-
ent task properties for localizing restricted FoV and
panorama images and shed some light on how to
exploit the proposed method for different localiza-
tion situations.

2 RELATED WORK

3D Structure-Based Localization. The task of visual localiza-
tion is to estimate the 6-DOF camera pose of a query image
with respect to a 3D scene model [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. The key to
this problem is to establish efficient, accurate, and robust

Fig. 1. (a) Given a query ground image, we first retrieve its most similar
satellite image from the database. (b) Then, we use a set of candidate
locations in the satellite image as projection centers. The fine-grained
location of the query ground image is then achieved from the projected
satellite image that is most similar to the query image. The estimated ori-
entation is obtained by comparing the selected projected image and the
query image. (c) The black box represents a large satellite map covering
the whole region, from which the small satellite images in the database
(shown in (a)) are cropped for coarse camera localization. The blue dots
denote the centers of those cropped images. The red boxes indicate the
regions selected for fine-grained camera localization, which cover nearly
the entire satellite map.

Fig. 2. Given a satellite image (a), we explore two transforms, i.e., polar transform (b) and the projective transform (c), to align it to its corresponding
ground-view panorama (d).
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2D-3D matches. This line of work can predict accurate
6-DoF camera poses. Nevertheless, 3D models are not avail-
able everywhere, and they are usually expensive to obtain.
This limits the applicability of these methods.

2D Ground-to-Ground Image-Based Localization. Image-
based localization aims to estimate the camera pose of a
query image by matching it against a large geo-tagged data-
base. It was originally approached as a ground-to-ground
image matching task, which is often used for place recogni-
tion [26], [27], [28], [29], [30], [31], [32], [33], [34], and loop-
closure detection [35], [36], [37]. In the ground-to-ground
image-based localization task, both the query and database
images are captured at ground level. The challenges are to
address the difficulties of large viewpoint differences, illu-
mination differences (e.g., day and night), and weather dif-
ferences between query and reference images. However,
ground-to-ground image matching cannot localize query
images where no corresponding reference image is avail-
able, since the world is non-uniformly sampled by tourists
and ground-level vehicles.

2D Ground-to-Satellite Image-Based Localization. Many
recent works [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [38],
[39], [40], [41], [42], [43], [44], [45] resort to satellite images
as a reference set for image-based camera localization, due
to the wide-spread coverage and easy accessibility of satel-
lite imagery. Challenges of ground-to-satellite image match-
ing include the significant visual appearance differences,
geometric projection differences, and the unknown relative
orientation between the two view images, as well as the lim-
ited FoV of query ground images. Existing works have
focused on designing powerful network architectures [1],
[3], [4], [7], [41], [43], bridging the cross-view domain
gaps [6], [8], [9], [10], [45], and learning orientation invariant
or equivariant features [4], [5], [10], [43], [44].

Although promising results have been achieved, almost
all the approaches only estimate the location (latitude and
longitude) of a query image but neglect the orientation mis-
alignment. Our prior work [10] is the first attempt to esti-
mate the 3-DOF camera pose (location and estimation) via
ground-to-satellite image matching. However, all prior arts
(including ours) only retrieve the most similar satellite
image for a query image. As a result, the estimates of cam-
era location are quite coarse. In this article, we provide a
new mechanism for estimating the fine-grained location
and orientation of the query ground image subsequent to
the coarse localization stage.

3 IMAGE RETRIEVAL FOR COARSE CAMERA

GEO-LOCALIZATION

The approach proposed in this article involves a coarse
localization stage in which image retrieval techniques are
used to roughly estimate where an image was taken, and a
fine-grained localization stage where the displacement
between the query ground camera and the center of the
retrieved satellite image is computed. In this section, we
outline the extended framework for coarse camera geo-
localization in Fig. 4.

For the cross-view geo-localization task, query images
are captured at ground level, and satellite images in the
database are captured from an overhead view. Since there

are large appearance variations between these two image
domains, our strategy is first to reduce the projection differ-
ences between the viewpoints and then to extract discrimina-
tive features from the two domains. Furthermore, inspired
by how humans localize themselves [46], [47], we exploit the
spatial relationships between objects as a critical cue for
inferring location and orientation. To this end, we enable our
descriptors to encode the spatial relationship among the fea-
tures, as indicated by Fg and Fs in Fig. 4.

Despite the discriminativeness of the spatially-aware fea-
tures, they are very sensitive to orientation changes. For
instance, when the azimuth angle of a ground camera
changes, the scene contents will be shifted in the ground
panorama, and the image content may be dramatically dif-
ferent if the camera has a limited FoV, as illustrated in
Fig. 3. Therefore, finding the orientation of the ground
images is crucial to make the spatially-aware features mean-
ingful. To this end, we propose a Dynamic Similarity
Matching (DSM) module, as illustrated in Fig. 4. With this
module, we not only estimate the orientation of the ground
images but also achieve more accurate feature matching
scores, regardless of orientation misalignments and limited
FoVs, thus enhancing the performance of geo-localization.

3.1 Bridging the Domain Gap by the Polar Transform

When a scene is planar, a horizontal line in the ground-level
panorama corresponds to a circle in the satellite image, and
a vertical line in the ground-level panorama corresponds to
a ray starting from the center of the satellite image. This lay-
out correspondence motivates us to apply a polar transform
to the satellite images. In this way, the spatial layouts of
these two domains can be roughly aligned, as illustrated in

Fig. 3. The challenges of cross-view image matching: the orientation of
the query ground image is unknown, and its FoV is restricted. The scene
content in panoramas captured at the same location but with different
azimuth angles is offset. The image content in an image with a restricted
FoV can be entirely different from another image captured from the
same location, indicated by different boxes in (b). The polar-transformed
satellite image (c) is an approximation to the ground panorama, which
preserves all information from the original satellite image. The projec-
tive-transformed satellite image (d) loses some information, but pre-
serves the ground-level geometry.
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Figs. 3b and 3c. To be specific, the polar origin is set to the
center of each satellite image, corresponding to the geotag
location, and the 0� angle is chosen as the northward direc-
tion, corresponding to the upwards direction of an aligned
satellite image. In addition, we constrain the height (i.e.,
vertical resolution) of the polar-transformed satellite
images to be the same as the ground images, and ensure
that the angle subtended by each column of the polar
transformed satellite images is the same as in the ground
images.

We apply a uniform sampling strategy along rays to the
satellite image, such that the innermost and outermost
circles of the satellite image are mapped to the bottom and
top line of the transformed image respectively. Formally, let
S � S be the size of the satellite image and Hg �Wg be the
target size of polar transform. The polar transform between
the original satellite image pixels ðusi ; vsi Þ and the target
polar transformed pixels ðut

i; v
t
iÞ is expressed as

usi ¼ u0 � rðHg � vtiÞ cos ð2puti=WgÞ=Hg;
vsi ¼ v0 þ rðHg � vtiÞ sin ð2put

i=WgÞ=Hg;

�
(1)

where ðu0; v0Þ is the satellite image center, and r is the maxi-
mum radius for the polar transform and set to S=2.

3.2 Bridging the Domain Gap by the Projective
Transform

The polar transform is a simple approximation for the cross-
view image transformation. In this article, we further estab-
lish more realistic geometric correspondences between the
satellite image and the ground-level panorama, especially
for scenes that are planar and lie on the ground plane.

Transformation Between Satellite and Ground-Level Cam-
eras.As illustrated in Fig. 5, we use ðx1; y1; z1Þ to repre-
sent the satellite camera coordinates and ðx2; y2; z2Þ to
denote the ground-level camera coordinates. The trans-
formation between the two camera coordinate systems is
expressed as

x1
y1
z1
1

2
664

3
775 ¼

0 1 0 0
1 0 0 0
0 0 �1 H
0 0 0 1

2
664

3
775

x2

y2
z2
1

2
664

3
775; (2)

whereH is the height of the satellite above the ground level.
Satellite Camera Coordinate System.The satellite camera

projects a point ðx1; y1; z1Þ to its image coordinates ðus
i ; v

s
i Þ

by a parallel projection

us
i

vsi

� �
¼ s 0 0 u0

0 s 0 v0

� � x1

y1
z1
1

2
664

3
775; (3)

where s is the resolution of the satellite image and ðu0; v0Þ is
the satellite image center.

Ground-Level Spherical Camera Coordinate System. In the
ground-level camera coordinate system, we define u as the
elevation angle with respect to the z2 axis and f as the azi-
muth angle. To be consistent with the polar transform, f ¼ 0�

is the northward direction and it corresponds to the negative
direction along x2 axis. For both u and f, clockwise is the

Fig. 4. The overall framework of the proposed method. For the satellite image, we use a two-branch network that first applies a polar transform and a
projective transform before extracting features with a CNN. For the ground image, we also use a two-branch network that takes the bottom half of the
image corresponding to the projective-transformed satellite image and the whole image corresponding to the polar-transformed image before
extracting features. Given the concatenated feature tensors, the correlation between the two streams is used for estimation of the orientation of the
ground image with respect to the satellite image. Next, the satellite features are shifted and cropped to obtain the section that (potentially) corre-
sponds to the ground features. The similarity of the resulting features is then used for the retrieval of location.

Fig. 5. Illustration of latent geometric correspondences between a satel-
lite image and a ground-level panorama for pixels on the ground plane.
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positive direction. The mapping between ðu;fÞ and
ðx2; y2; z2Þ is computed as

x2 ¼ z2 tan u cosf;
y2 ¼ �z2 tan u sinf;

�
(4)

and the projection between ðu;fÞ and ground-level pano-
rama image coordinates ðut

i; v
t
iÞ is expressed as

u ¼ pvti=Hg;
f ¼ 2put

i=Wg:

�
(5)

Projection Between Satellite and Ground-Level Images.Finally,
the mapping between the satellite image coordinates ðus

i ; v
s
i Þ

and ground-level panorama image coordinates ðut
i; v

t
iÞ is

established as

us
i ¼ u0 þ sz2 tan ðpvti=HgÞ cos ð2puti=WgÞ;
vsi ¼ v0�sz2 tan ðpvti=HgÞ sin ð2put

i=WgÞ;

�
(6)

where z2 represent the scene height at pixel ðut
i; v

t
iÞ. Similar

to the polar transform, we choose the satellite image center
ðu0; v0Þ as the projection point of the projective transform.

In practice, the height maps of satellite images are hard to
obtain and the scene heights are much smaller compared to
the distance between the ground and the satellite camera.
Thus, we assume all the pixels in the satellite image lie on
the ground plane. Therefore, z2 is set to the height of ground
plane with respect to the ground camera, and 0:5Hg < vti �
Hg because the ground plane is mostly projected to the bot-
tom half of a ground-view image. In doing so, we construct
the geometric correspondences between satellite and
ground images for points that lie on the ground plane. For
clarity, we call this projection as “projective transform”.

Note that both the polar transform and the projective
transform are implemented in an inverse warping manner.
Thus, they are differentiable and applicable in end-to-end
training. In our implementation, they are applied as a pre-
processing step in order to reduce the computation time dur-
ing both training and testing steps.

3.3 Complementary Between the Transforms

In Figs. 2b and 2c, and Figs. 3c and 3d, we present two
examples of the polar-transformed and projective-trans-
formed satellite images. Note that, although the projective
transform only retains pixels in a small region of the center
of a satellite image, with others pixels being occluded, the
scene geometric structure is better preserved by the projec-
tive transform than polar transform. This is also reasonable
since scene objects far away from the center of a satellite
image are unlikely visible in the ground-level panorama.

Furthermore, we illustrate the mapping relationship
between the source (satellite) and target (ground-level pan-
orama) coordinates of the two transforms in Fig. 6. As the
projection method along the azimuth direction (image col-
umns in target coordinates) is the same in both transforms,
we compare their projection difference on mapped image
row coordinates. Fig. 6 manifests that most of the pixels are
mapped to a few rows in a target image (same color) by the
projective transform, while the polar transform maps satel-
lite image pixels to different rows in a target image (indi-
cated by different colors) uniformly. This indicates that the

polar transform retains nearly all the information of a satel-
lite image and the projective transform is able to highlight
the ground-level scenes and their structure that would be
visible in ground-level panoramas.

As illustrated in Figs. 2b and 2c, and Figs. 3c and 3d, the
projective transformed and polar transformed images pro-
vide complementary information for the cross-view match-
ing. Hence, we apply both polar and projective transforms
to bridge the cross-view domain gap.

3.4 Spatially-Aware Feature Representation

Applying a translation offset along the horizontal axis of a
polar-transformed or projective-transformed image is equiv-
alent to rotating a satellite image. Hence, the task of learning
the rotation equivariant features for satellite images is re-for-
mulated into learning translation equivariant features on
polar or projective transformed images. Doing so signifi-
cantly reduces the learning difficulty of our network since
CNNs are inherently translation equivariant [48], [49], [50].
Because the horizontal axis corresponds to rotation degrees,
we need to ensure that the CNN treats the leftmost and right-
most columns of the transformed image as adjacent neigh-
bours. Hence, we employ circular convolutions [51] with
periodical padding along the horizontal direction.

Fig. 4 illustrates the pipeline of our coarse localization
framework. As the traits of representations resulting from
polar- and projective-transformed satellite images are dif-
ferent in nature, we adopt separate CNNs to extract features
from them. For the ground images, we also employ separate
CNNs. One focuses on the bottom half of the ground image
and it is expected to learn similar feature representations to
the projective-transformed satellite image. The other one
extracts features from the whole ground image and aims to
learn matching features with respect to the polar trans-
formed satellite images. The four branches in Fig. 4 have the
same architecture. Since the projective-transformed satellite
images share the same domain as the ground plane images,
we employ the same weights in the first and third branch in
Fig. 4 (indicated by the blue color) to extract features and
then enforce their similarity. The other two branches,
marked with different colors, do not share weights so that
they can adapt to their individual domains.

We adopt VGG16 [52] as the network backbone. In partic-
ular, the first ten layers of VGG16 are used for features extrac-
tion. As the vertical direction of the images may include
irrelevant features, such as sky, missing pixels and distor-
tions in the transformed satellite images, we modify the sub-
sequent three layers to decrease the vertical resolution of the

Fig. 6. Visualization of the source (satellite) and target (ground-level pan-
orama) coordinate correspondences by (a) the polar transform and (b)
the projective transform. The spatial positions corresponds to the satel-
lite image pixels. Different colors in the two images indicate the row num-
ber in the target coordinates.

2686 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Queensland. Downloaded on December 31,2025 at 13:20:06 UTC from IEEE Xplore.  Restrictions apply. 



feature maps while maintaining their horizontal resolution.
In this manner, our extracted features are more tolerant to
distortions along the vertical direction while retaining infor-
mation along the horizontal direction. We also decrease the
number of feature channels to 8. For each branch in Fig. 4, the
output feature is of size 4� 64� 8. The extracted features in
each stream are then concatenated together to form a global
feature descriptor. Hence, for a satellite image or a ground-
level panorama, the size of their global descriptors is 4� 64�
16. Following our previous work [9], the extracted feature
volumes are used to preserve the spatial layout of scenes,
thus improving the discriminativeness of the descriptors. For
query ground images with limited FoV, the width of the
extracted features is decreased proportionally.

3.5 Dynamic Similarity Matching (DSM)

When the orientation of ground and transformed satellite
features is aligned, their descriptors can be easily compared.
However, the orientation of the ground images is not always
available, and orientation misalignments increase the diffi-
culty of geo-localization significantly, especially when the
ground image has a limited FoV.When humans use amap to
localize themselves, they determine their locations and ori-
entation jointly by matching what they have seen to what a
map shows [46], [47]. In order to let the network mimic this
process, we compute the correlation between the ground
and satellite descriptors along the azimuth angle axis. To be
specific, we use the ground descriptors as a sliding window
and then compute the inner product between then ground
and satellite descriptors across all possible orientation.

Let Fs 2 RH�Ws�C and Fg 2 RH�Wg�C denote the satellite
and ground descriptors, respectively. Let H and C indicate
the height and channel number of the descriptors, and Ws

andWg indicate thewidth of the satellite and ground descrip-
tors. The correlation betweenFs andFg is expressed as

½Fs � Fg�ðiÞ¼
XC
c¼1

XH
h¼1

XWg

w¼1

Fsðh;modðiþ w;WsÞ; cÞFgðh;w; cÞ;

(7)

where F ðh;w; cÞ is the feature response at index (h, w, c)
while operator mod denotes the modulo operation. Having
computed the correlation, we take the argument of the maxi-
mum similarity scores as our estimated orientationmisalign-
ment of the ground image with respect to the transformed
satellite image.

We normalize Fs and Fg by the ‘2 norm before calculating
the correlation results for panorama images. When a ground
image has a limited FoV, we crop the transformed satellite
features corresponding to the FoV of the ground image.
Then we re-normalize the cropped satellite features and cal-
culate the ‘2 distance between the ground and satellite
descriptors as the similarity score. Note that if there are
multiple maxima in the similarity scores, the satellite image
contains indistinguishable symmetries. Thus, we choose
one of these maxima at random.

3.6 Training DSM

During the training process, our DSM module is applied to
all ground and satellite pairs, regardless of whether they are

matching or not. For matching pairs, DSM forces the net-
work to learn similar feature embeddings for ground and
transformed satellite images as well as discriminative fea-
ture representations along the horizontal direction (i.e., azi-
muth). In this way, DSM is able to identify the orientation
misalignment as well as find the best feature similarity for
matching. For non-matching pairs, we first find the orienta-
tion with the highest similarity using the DSM module, and
then minimize the maximum similarity score of non-match-
ing pairs to make the descriptors more discriminative. Fol-
lowing traditional cross-view localization methods [4], [5],
[8], we employ the weighted soft-margin triplet loss [4] to
train our network. Our training loss is expressed as

L ¼ log 1þ e
a

��Fb
g�F

j
s0
��
F
�a

��Fb
g�F

j

s�0
��
F

� �

þ log 1þ e
a

��Fw
g �Fl

s0
��
F
�a

��Fw
g �Fl

s�0
��
F

� �

þ log 1þ ea
��Fg�Fs0

��
F
�a

��Fg�F
s�0
��
F

� �
: (8)

In the above equations, Fb
g and Fw

g denote the extracted fea-
tures from the bottom half of a query ground image and the
whole ground image, Fj

s0 and Fl
s0 are the cropped features

from the non-matching projective-transformed satellite fea-
tures and the polar-transformed satellite features, Fj

s�0 and
Fl
s�0 denote the cropped features from the matching projec-

tive-transformed satellite features and the polar-trans-
formed satellite features. Recall that we do not require
ground view query images to be panoramas, and the trans-
formed satellite images will be cropped automatically to fit
the resolution of the ground images by the DSM module.
Fg ¼ ½Fb

g ; F
w
g � is the global query ground descriptor, Fs�0 ¼

½Fj

s�0 ; F
l
s�0 � and Fs0 ¼ ½Fj

s0 ; F
l
s0 � indicate the cropped satellite

descriptors of the matching satellite image and a non-
matching satellite image aligned by our DSM module, ½	; 	�
is the concatenation operation, and k 	 kF denotes the Frobe-
nius norm. The parameter a controls the convergence speed
of training process. Following precedent [4], [5], [8], we set
it to 10.

4 FINE-GRAINED CROSS-VIEW IMAGE MATCHING

After the coarse geo-localization process, we retrieve an sat-
ellite image that is the most similar to the query ground
image. However, the GPS tag of the satellite image is associ-
ated with its center point, whereas the ground image might
be captured away from the center of the satellite image.
Therefore, in this article we further propose a novel mecha-
nism to compute the displacement between the query
ground camera and the retrieved satellite image center.

To achieve this goal, we employ the projective transform
explained in Section 3.2. As indicated in Fig. 6, only a small
portion of the satellite image is projected to the transformed
image. Thus, the projective transform is sensitive to the pro-
jection center. This phenomenon is useful in aiding fine-
grained localization of where a query image was taken.

In the fine-grained camera geo-localization stage, we first
select a central square region in the retrieved satellite image,
as shown in Fig. 1b. This central region encloses the possible
query camera locations. At each pixel in the selected region,
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we project the satellite image to the corresponding ground
panorama coordinates by applying the projective transform.
Then, a query image with unknown orientation (or even
with limited FoV) is compared with each of the projective-
transformed satellite images via the dynamic similarity
matching module. Specifically, we circularly shift the pro-
jective-transformed satellite image along the azimuth (hori-
zontal) direction. If the query ground image has a restricted
FoV, we also crop out a portion of the transformed image
according to its FoV. The similarity between the trans-
formed image and the query ground image is then com-
puted. Note that in this fine-grained camera localization
process we use the SSIM as the similarity measure instead
of the cross-correlation as SSIM is more suitable to evaluate
structural differences between the projective-transformed
satellite image and the query ground image.

For each projective-transformed satellite image,we record
the maximum similarity across different orientations as its
similarity to the query image. Among all the projective-trans-
formed satellite images, the most similar one is selected, as
marked by the green box in Fig. 1b. Its corresponding projec-
tion point, indicated by the blue dot in Fig. 1b, is taken as the
query camera location. The computed relative orientation is
taken as the camera orientation. Under such a scheme, the
precision of the location and orientation estimation depends
on the real-world distance of a satellite image pixel and the
resolution of the query image, respectively.

Fig. 7 provides some qualitative examples of fine-grained
localization of orientation-unknown images. The query
images are presented in the last column and their corre-
sponding retrieved top-1 satellite images are shown in the

first column. Since the geotags of the database satellite
images are associated with the image centers, we first apply
the projective transform to the retrieved satellite images
according to their image centers, which is also the GPS loca-
tion of query ground images provided by the dataset. The
projected images are presented in the second column of
Fig. 7. They are significantly different from the query
ground images. We next apply the proposed fine-grained
camera localization method, and visualize the most similar
projective-transformed satellite images in the third column.
The fourth column provides the shifted and cropped projec-
tive-transformed satellite images according to the estimated
relative orientation and the FoV of ground images. The esti-
mated camera location with respect to the satellite image
center and the relative orientation are presented under each
of the images. As can be seen, images presented in the
fourth column align with the original query ground images.

Since in the second stage (fine-grained camera localization)
we search exhaustively every point in the selected central
region, we recommend that the reference satellite images in
the first stage (coarse camera localization) should cover the
entire region as densely as possible. By doing so, the selected
central region used for fine-grained camera geo-localization
will be small, reducing the computation complexity.

In our implementation, the satellite image is resized to
256� 256 pixels from 1200� 1200 pixels. The central square
region covers 40� 40 pixels in the resized image, correspond-
ing to 11:25� 11:25 squaremeters (
5:625meters to the satel-
lite image center). By searching the 40� 40 candidate
locations and the 512 candidate orientations (40� 40� 512 ¼
614; 400 candidate solutions in total), it takes 15 minutes on

Fig. 7. Qualitative illustration of fine-grained 3-DoF camera localization for query images with unknown orientation and varying FoVs. Given query
images (the last column), we first retrieve their most similar satellite images (the first column) from the database. The projective-transformed satellite
images according to the query camera GPS locations are presented in the second column. The ground structure of those images (the second col-
umn) is significantly different from the query images (the last column), indicating that the GPS locations are not accurate. According to our fine-
grained camera geo-localization method, we exhaustively project the retrieved satellite image to their ground panorama coordinates at points in a
central square region of the retrieved satellite image. Among the projected images, the most similar ones to the query ground images are presented
in the third column. The fourth column shows the shifted and cropped projective-transformed satellite images that align with query images.
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average for the fine-grained localization of a query image on
anRTX 2080 Ti GPU.

5 EXPERIMENTS

5.1 Datasets

We carry out the experiments on two standard cross-view
datasets, CVUSA [2] and CVACT [5]. They both contain
35,532 training ground and satellite pairs and 8,884 testing
pairs. Following an established testing protocol [5], [8], we
denote the test sets in CVUSA and CVACT as CVUSA and
CVACT_val, respectively. CVACT also provides a larger test
set, CVACT_test, which contains 92,802 cross-view image
pairs for fine-grained city-scale geo-localization. Note that
the ground images in both of the two datasets are panora-
mas, and all the ground and satellite images are north
aligned. Fig. 8 presents samples of cross-view image pairs
from the two datasets.

For localizing ground images with unknown orientation
and limited (180�) FoV, we use the image pairs in CVUSA
and CVACT_val and randomly rotate the ground images
along the azimuth direction and crop them according to a
predetermined FoV. The source code of this work is avail-
able at https://github.com/shiyujiao/IBL.git.

Accurate Camera Geo-Localization. In the CVUSA dataset,
there is no GPS data available for the ground–satellite image
pairs. The CVACT dataset, introduced in our previous
work [5], does provide GPS data for every ground–satellite
image pair. However, due to GPS drift, the location of a
ground camera provided by the dataset is not accurate,
which is visualized in Fig. 7. In practice, it is also hard to
collect strictly location-aligned satellite–ground image
pairs [53]. Hence, we adopt user study for the evaluation of
our fine-grained localization method on the CVACT dataset.

5.2 Coarse Camera Geo-Localization

5.2.1 Implementation Details

We use the first ten convolutional layers in VGG16 with pre-
trained weights on Imagenet [54] and randomly initialize
the parameters in the following three layers for extraction of
global feature descriptors. The first seven layers are kept

fixed and the subsequent six layers are learnt. The Adam
optimizer [55] with a learning rate of 10�5 is employed for
training. Following [3], [4], we adopt an exhaustive mini-
batch strategy [3] with a batch size of B ¼ 32 to create train-
ing triplets. Specifically, for each ground image within a
mini-batch, there is one matching satellite image and B� 1
non-matching images. Thus we construct BðB� 1Þ triplets.
Similarly, for each satellite image, there is one matching
ground image and B� 1 non-matching images within a
mini-batch, and we create another BðB� 1Þ triplets. In total,
we obtain 2BðB� 1Þ triplets in total.

In order to obtain a time-efficient approach, we compute
the correlation in our DSMmodule by the fast Fourier trans-
form during inference. Specifically, we store Fourier coeffi-
cients of satellite features in the database, and only calculate
Fourier coefficients of the ground descriptors in the forward
pass. In doing so, the computation cost yields 13NHWsC
flops (including 4NHWsC flops for coefficient multiplica-
tion in the spectral domain, and 1:5NHCWslog 2 W flops for
the inverse Fast Fourier Transform), where H, Ws and C are
the height, width and channel number of the global feature
descriptor of a satellite image, and N is the number of data-
base satellite images. In contrast, performing correlation in
the spatial domain requires 2NHW 2 C flops. Thus, the com-
putation time by applying the Fourier transform is reduced

by a factor of 10 ( 13NHWC
2NHW2 C

� 1
10).

For localizing query images with unknown orientation
and a limited FoV, there is a shift-and-crop operation to
find the corresponding part of a query image in a satellite
image. The flops in the shift operation are NHWsC, and the
flops in the crop operation are NHWgC, where N is the
number of database satellite images, H and C are the height
and channel number of satellite (and query ground) fea-
tures, Wg and Ws are the widths of satellite and query
ground features, respectively, and Wg ¼ FoV �Ws=360. The
flops in computing the similarity between a query image
and all satellite images are 3NHWgC. Hence, the complexity
of retrieving a ground image from a database with N satel-
lite images is OðNHWsCÞ.

Using an RTX 2080 Ti GPU, the feature extraction time
for a ground image is 0.01 s, and it takes 0.06 s on average to
retrieve its satellite counterpart from a database containing
8884 reference images. On the CVACT_val dataset, the 8884
reference images cover approximately 64 km2.

5.2.2 Evaluation Metrics

Location Estimation. Following the standard evaluation pro-
cedure for cross-view image localization [3], [4], [5], [6], [7],
[8], [43], we use the top K recall as the location evaluation
metric to examine the performance of our method and com-
pare it with the state-of-the-art. Specifically, given a ground
image, we retrieve the top K satellite images in terms of ‘2
distance between their global descriptors. The ground
image is regarded as successfully localized if its correspond-
ing satellite image is retrieved within the topK list. The per-
centage of correctly localized ground images is recorded as
recall atK (r@K).

Orientation Estimation.The predicted orientation of a query
ground image is meaningful only when the ground image
is localized correctly. Hence, we evaluate the orientation

Fig. 8. Cross-view image pairs from the CVUSA (top two rows) and
CVACT (bottom two rows) datasets. The satellite images are on the left
and the ground panoramas are on the right.
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estimation accuracy of our DSM only on ground images
that have been correctly localized by the top-1 recall. In
this experiment, when the differences between the pre-
dicted orientation of a ground image and its ground-truth
orientation is within 
10% of its FoV, the orientation esti-
mation of this ground image is deemed as a success. We
record the percentage of ground images of which the ori-
entation is correctly predicted as the orientation estimation
accuracy (Orien_acc).

Combined Measure. Denote the top-1 recall rate for loca-
tion estimation as Loc_acc. The overall 3-DOF camera locali-
zation performance is computed as Loc acc�Orien acc,
which we denote as Overall.

5.2.3 Localizing Orientation-Aligned Panoramas

First, we investigate the performance of location estimation
of our method and compare it with the state-of-the-art [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10] on the standard CVUSA
and CVACT datasets, where ground images are orientation-
aligned panoramas. The recall results at top-1, top-5, top-10
and top-1% on the CVUSA and CVACT_val datasets are
presented in Tables 1 and 2, respectively. They are reported
from other works or produced by the re-trained models
using source codes provided by the authors. The complete
r@K performance curves on CVUSA and CVACT_val are
illustrated in Figs. 9a and 9b, respectively.

Among those baseline methods, [1], [2], [3] are the
first approaches that utilize deep learning for cross-view
related tasks. CVM-NET [4], GeocaosNet-II [7] and Siam-

FCANet34 [7] focus on designing powerful feature extrac-
tion networks. Liu and Li [5] introduce the orientation infor-
mation to networks so as to facilitate geo-localization
performance. These works do not explicitly address the
domain gap between ground and satellite images which
leads to their inferior performance.

Regmi and Shah [6] adopt a conditional GAN to generate
satellite images from ground panoramas. Although it helps
to bridge the cross-view domain gap, undesired scene con-
tents are also introduced in this process. CVFT [8] proposes a
Cross-view Feature Transport (CVFT) module to better align
ground and satellite features. However, it is hard for net-
works to learn geometric and feature response correspond-
ences simultaneously. SAFA [9] explores a parameter-free
polar transform to bridge the geometric domain gap, and
proposes a Spatially-aware Position Embedding (SPE) mod-
ule to further construct geometric and feature correspond-
ences between the two view images. In [10], we found that
further increasing the spatial size of the global image
descriptors can increase the localization performance. Simi-
lar to SAFA, the polar transform is also employed in [10] to
bridge the cross-view domain gap. However, in this journal
paper, we further establish the geometric correspondences
between a satellite image and its corresponding ground-level
panorama by a projective transform. The projective trans-
form and the polar transform cooperate with each other to
align the matching ground and satellite image pairs. As
shown in Tables 1 and 2, the top-1 recall rate has been further
boosted by the newly proposed method compared to our
conferece work [10]. Although SAFA achieves slightly better
performance on the CVACT_val, its performance degrades
significantly when orientation of query images is unknown,
whichwill be investigated in later experiments.

TABLE 1
Comparison of Our Approach With Existing

Methods on the CVUSA [2] Dataset

Methods CVUSA

r@1 r@5 r@10 r@1%

Workman et al. [1] – – – 34.3
Zhai et al. [2] – – – 43.2
Vo and Hays [3] – – – 63.7
CVM-NET [4] 22.47 49.98 63.18 93.62
Liu and Li [5] 40.79 66.82 76.36 96.12
Regmi and Shah [6] 48.76 73.64 81.27 95.94
GeocapsNet-II [7] – – – 98.07
Siam-FCANet34 [7] – – – 98.3
CVFT [8] 61.43 84.69 90.49 99.02
SAFA [9] 89.84 96.93 98.14 99.64
Shi et al. [10] 91.96 97.50 98.54 99.67
Ours 92.69 97.78 98.60 99.61

Fig. 9. Evaluations of recall at different values ofK on the CVUSA, CVACT_val and CVACT_test datasets.

TABLE 2
Comparison of Our Approach With Existing Methods on the
CVACT_val [5] Dataset by Re-Training Existing Networks

Methods CVACT_val

r@1 r@5 r@10 r@1%

CVM-NET [4] 20.15 45.00 56.87 87.57
Liu and Li [5] 46.96 68.28 75.48 92.01
Regmi and Shah [6] 48.62 72.48 79.65 93.16
CVFT [8] 61.05 81.33 86.52 95.93
SAFA [9] 81.03 92.80 94.84 98.17
Shi et al. [10] 82.49 92.44 93.99 97.32
Ours 82.70 92.50 94.24 97.65
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Distance-Based Localization. In CVUSA and CVACT_val,
there is only one matching satellite image in the database for
a query image in the test set. In [5], we introduced CVACT_-
test to evaluate the performance of different methods on
real-world localization scenarios. This test set provides geo-
tagged (GPS) satellite images that densely cover a city, and
the localization performance is measured in terms of dis-
tance (meters). Specifically, a ground image is considered as
successfully localized if one of the retrieved top K satellite
images is within 5 meters of the ground-truth location of the
query ground image. That is to say, in this test set, there
might be several matching satellite images in the database
for a query ground image. Following the evaluation protocol
in [5], we plot the percentage of correctly localized ground
images (recall) at different values ofK in Fig. 9c.

Compared to the work [10], SAFA [9] has eight additional
Spatially-aware Position Embedding (SPE) modules to con-
struct cross-view correspondences. Thus, the performance of
SAFA is significantly better than that of Shi et al. [10] in this
challenging test set. As a contribution of this paper, we estab-
lish more realistic geometric correspondences between satel-
lite and ground-level images compared to our conference
version [10] which makes the extracted feature descriptors
more informative. Hence, the localization performance on the
CVACT_test is further boosted. The top-1 recall rate of SAFA
and the newly proposed algorithm on the CVACT_test is
55.50% and 60.46%, respectively. Note that having the SPE
module in the framework will prohibit the application of our
DSM which is designed to address orientation-unknown and
limited FoV query images. Thuswe do not retain it in the pro-
posed framework in this article. In the following section, we
will demonstrate the superiority of our DSMmodule on local-
izing query images with unknown-orientation and limited
FoV. Fig. 10 shows a visualization of retrieved satellite images
for orientation-aligned panoramas by ourmethod.

5.2.4 Practical Localization: Localizing With Unknown

Orientation and Limited FoV

We compare the performance of our newly proposed
method with our three previous works [8], [9], [10], on the
CVUSA and CVACT_val datasets in a more realistic

localization scenario, where the ground images do not have
a known orientation and have a limited FoV. Recall that Liu
and Li [5] require the orientation information as an input, so
we cannot compare our approach with such a method.

Location Estimation. In order to evaluate the impact of orien-
tationmisalignments and limited FoVs on localization perfor-
mance, we randomly shift and crop the ground panoramas
along the azimuth direction for the CVUSA and CVACT_val
datasets. In thismanner, wemimic the procedure of localizing
images with limited FoV and unknown orientation. For com-
pleteness, we also report the performance of the models
trained without known orientations on orientation-aligned
query images. Results are presented in Table 3.

For CVFT [8] and SAFA [9], the difference between the
models from Section 5.2.3 and this section is that we apply
the random orientation augmentation on training image
pairs. By doing so, we expect that the networks can tolerate
some orientation misalignments between satellite and
ground image pairs. Those two methods do not have the
ability to explicitly align the orientation of ground and satel-
lite images. Thus, their performance drops significantly
when localizing ground images with unknown orientation,
which can be seen by comparing Tables 1, 2 and 3. Further-
more, since the data augmentation on orientation is applied
during training, these networks need to spendmore capacity
on tolerating orientation misalignments. Their performance
on localizing orientation-aligned query images drops.

For the method [10] and the newly proposed method, the
models from Section 5.2.3 and this section are the same,
where random orientation augmentation is applied during
training. In these two methods, an explicit parameter-free
orientation alignment mechanism (the Dynamic Similarity
Matching module) is applied, and thus they outperform
CVFT and SAFA by a large margin on localizing orientation-
unknown query images. The performance degradation of
the two methods between orientation-aligned and orienta-
tion-unknown images is mainly due to the orientation ambi-
guity. Compared to the work [10] that we extend from, the
newly proposedmethod establishesmore sensible geometric
correspondences between satellite and ground-level images
by a projective transform, leading to a better performance.

Fig. 10. Visualization of localization results attained by our method on the CVACT_test set. From left to right: ground-level query image and the top
1-5 retrieved satellite candidates. Green and red borders indicate correctly and incorrectly retrieved results, respectively.
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Finally, as FoVs increase, one can observe that all of the
methods perform better. That is mainly because a larger
FoV image provides richer scene contents, making a global
descriptor more discriminative.

Orientation Estimation. As aforementioned, the estimated
orientation of a query image is meaningful only if its location
has been correctly determined. Thus, the experiment on the
orientation estimation is conducted on ground images which
are correctly localized in terms of top-1 retrieved candidates.
For the fair comparison between different algorithms, we
combine the location estimation accuracy and the orientation
estimation accuracy together to present the overall perfor-
mance score in Table 4. As indicated by Table 4, our pro-
posed method achieves higher location estimation accuracy
than our previous work [10], whereas the orientation estima-
tion accuracy is slightly lower. This implies that scenes may
look similar in multiple directions, even when the location is
estimated correctly. For instance, a person standing on a
road may be able to localize their position but will find it dif-
ficult to determine the orientation if the views are similar
along the road in both directions. Fig. 11 contains examples
of such symmetric scenes. According to the combined score,
our newly proposed method achieves the best performance
on 3-DoF camera localization. Fig. 13 visualizes the orienta-
tion estimation process.

Why Does Performance Decrease When the Orientation is
Unknown?When the orientation of the camera is unknown,
the search space becomes significantly larger. The alignment
between the query imagewith non-matching satellite images
increases the number of local maxima in the similarity objec-
tive function. Due to occlusions and the definition of the loca-
tion alignment between the ground and satellite images in
two transforms, the matching satellite image projected by
the transforms might be not very similar to the query image.
When the similarity score of an incorrect location-orientation
pair is higher than the true pair, ourmethodwill estimate the
wrong location and orientation for a query image.

To demonstrate this, we conduct experiments for localiz-
ing orientation-unknown query images where the orienta-
tion alignment is only performed with respect to the
matching satellite image, not the entire database as is stan-
dard. Note that this is for illustration only, and is not a prac-
tical setting. The results are shown in the third row of
Table 5. It can be seen that the performance is significantly
better than that of aligning query images with non-match-
ing ones by the DSM (the second row of Table 5). It can be
seen that the performance is significantly better than when
aligning with respect to the entire database (the second row
of Table 5). In fact, the results are even better than when
using orientation-aligned query images, since minor orien-
tation misalignments between the query and matching sat-
ellite images can be rectified by our DSMmodule.

5.2.5 Discussion on the Necessity of the Polar

Transform and the Projective Transform

In this section, we conduct an ablation study to demonstrate
the effectiveness and necessity of the polar transform (polar)
and the projective transform (proj). To this end, we remove

TABLE 4
The Overall Performance of 3-DoF Coarse Camera Localization

Dataset CVUSA CVACT_val

FoV 360� 180� 360� 180�

Loc_acc Orien_acc Overall Loc_acc Orien_acc Overall Loc_acc Orien_acc Overall Loc_acc Orien_acc Overall

Shi et al. [10] 78.11 99.41 77.65 48.53 98.54 47.72 72.91 99.84 72.79 49.12 99.10 48.68
Ours 78.94 99.45 78.51 54.27 96.87 52.57 73.06 99.75 72.88 52.98 98.72 52.30

Fig. 11. Examples of symmetric scenes (satellite images). At these loca-
tions, it is hard to determine the orientation (azimuth angle) of a ground
image.

TABLE 3
Comparison of Recall Rates for Localizing Ground Images With Unknown Orientations and Varying FoVs

(Models Trained With Random Orientation Augmentation)

Dataset Methods

FoV=360� FoV=180�

Orientation Aligned Orientation Unknown Orientation Aligned Orientation Unknown

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA

CVFT [8] 23.13 45.01 55.94 86.93 23.38 44.42 55.20 86.64 7.97 2354 33.32 74.40 8.10 24.25 34.47 75.15
SAFA [9] 53.33 76.82 84.29 97.48 52.85 76.27 83.78 97.50 27.43 53.85 65.70 92.27 28.71 55.27 66.65 92.78

Shi et al. [10] 91.96 97.50 98.54 99.67 78.11 89.46 92.90 98.50 75.11 89.72 93.48 98.71 48.53 68.47 75.63 93.02
Ours 92.69 97.78 98.60 99.61 78.94 90.31 93.42 98.67 75.65 89.17 93.44 98.90 54.27 72.78 79.54 94.73

CVACT_val

CVFT [8] 26.19 46.09 54.52 80.53 26.79 46.89 55.09 81.03 6.56 18.10 26.24 62.78 7.13 18.47 26.83 63.87
SAFA [9] 44.15 68.02 75.83 93.14 43.54 67.65 75.64 93.05 20.98 43.65 54.58 86.09 21.15 44.60 55.66 86.40

Shi et al. [10] 82.49 92.44 93.99 97.32 72.91 85.70 88.88 95.28 67.26 83.84 87.57 95.36 49.12 67.83 74.18 89.93
Ours 82.70 92.50 94.24 97.65 73.06 85.73 88.76 95.44 67.23 83.57 87.81 95.25 52.98 71.18 77.36 91.61
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the branch of polar-transformed satellite images or projec-
tive-transformed satellite images from our whole pipeline.
We denote such settings as “Ours w/o polar” and “Ours
w/o proj,” respectively. Accordingly, the corresponding
ground branch is also removed from the whole pipeline. In
particular, “Ours w/o proj” becomes the method proposed
in our conference version [10]. Table 6 reports the localiza-
tion performance of the three baselines.

When the ground images have a 360� or 180� FoV, the
newly proposed method with both polar and projective
transform achieves the best performance. That is because
the polar transform preserves all of the scene content infor-
mation and the projective transform recovers the ground
structure from a satellite image. As seen in Fig. 12, there is a
building in the ground-level panorama (Fig. 12d), and it is
also visible from the satellite image (Fig. 12a). The polar
transformed satellite image (Fig. 12b) successfully preserves
this scene information. However, the building is hard to be
recognized from the projective-transformed satellite image

(Fig. 12c). In contrast, the ground structure is better recov-
ered by the projective transform. The two types of trans-
formed images complement with each other to make the
satellite image descriptor informative and discriminative.
Moreover, we also present the projective-transformed satel-
lite image at the ground camera location in Fig. 12e. It aligns
better with the ground-level panorama. The ground camera
location is estimated by our fine-grained camera localization
method.

When the ground images have a more restricted FoV, i.e.
90� and 70�, the results in Table 6 show that the newly pro-
posed method achieves inferior performance than “Ours w/
o proj”. The reason is that the projective-transformed satellite
image only preserves a small portion information from the
original satellite image. When the query image has a small
FoV, e.g., only the building part in Fig. 12d, it will not be
matched to the projective-transformed satellite image. Thus
its localization result would be incorrect. Not surprisingly,
when the polar transform is removed from our pipeline, the

TABLE 5
Comparison of Recall Rates When the Query Image is Orientation-Aligned to Every Element

in the Database (Standard Case) or Just the Matching Image

Orien Align Negative
CVUSA CVACT_val

FoV=360� FoV=180� FoV=360� FoV=180�

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

Aligned – 92.69 97.78 98.60 99.61 75.65 89.17 93.44 98.90 82.70 92.50 94.24 97.65 67.23 83.57 87.81 95.25
Unknown ✓ 78.94 90.31 93.42 98.67 54.27 72.78 79.54 94.73 73.06 85.73 88.76 95.44 52.98 71.18 77.36 91.61
Unknown ✗ 93.22 98.22 98.94 99.74 79.44 92.64 95.78 99.46 84.30 93.93 95.52 98.49 73.06 88.61 92.19 97.90

TABLE 6
Comparison of Recall Rates for Localizing Ground Images With Unknown Orientation and Varying FoVs

Fig. 12. (a) Satellite image; (b) polar-transformed satellite image at the satellite image center; (c) projective-transformed satellite image at the satellite
image center; (d) query ground-level panorama; (e) projective-transformed satellite image at the ground camera location. The ground camera loca-
tion is determined by our fine-grained camera localization method. All of the images are orientation aligned.
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performance of ‘Ours w/o polar” decreases significantly.
This demonstrate the necessity of the polar transform.

To summarize, our newly proposed method is more suit-
able for localizing larger FoV images, and when the FoVs of
query images are small, removing the projective transform
branch and its corresponding ground image branch will be
more recommended. In real-world applications, it would be
better to employ different branches in our proposed pipe-
line according to different deployment situations.

Orientation Estimation w.r.t. the Two Transforms. We also
study the influence on localization performance when only
using the polar transform or the projective transform in ori-
entation estimation, denoted as “polar” and “proj,” respec-
tively. The results are given in Table 7. The ablation labelled
as “combined” is our whole method where both of the
transforms are applied to orientation estimation. It can be
seen that the polar transform contributes more to the final
performance, but both help boost performance.

5.3 Fine-Grained Camera Geo-Localization

Here, we conduct three groups of experiments on fine-
grained camera geo-localization: (1) location estimation with
known orientation; (2) orientation estimation with known
location; and (3) joint location and orientation estimation.

Location Estimation.We first evaluate the location estima-
tion accuracy of our method when the orientation of a query

image is given. Since ground-truth labels of the precise cam-
era locations are not available, we conduct a user study with
five participants for quantitative evaluation (two of them
are the authors of this paper). As shown in Fig. 7, given a
query ground image (the last column) and its correspond-
ing satellite image (the first column), it is very difficult for a
human to localize which pixel in the satellite image corre-
sponds to the query camera location. However, when the
projected satellite image at a given location (the second or
third column) is provided, it is much easier to determine
whether this location is correct or not by comparing the pro-
jected satellite image with the query image. Therefore, the
participants are provided with a query image, a projected
satellite image at the GPS location, and a projected satellite
image at the location estimated by our method. They are
required to decide whether the camera location of each pro-
jected image is correct or not (binary classification). More-
over, when the query image is different from both projected
images, we mark this case as unknown. This case occurs
when there is a severe occlusion in the vertical dimension.
For example, tree canopies entirely cover the road under-
neath, which makes the ground-level localization extremely
difficult.

We randomly select 150 image pairs from the
CVACT_val set for this user study, and we note that partici-
pates in this user study are unaware which image is pro-
jected according to the GPS location and which is projected
according to the estimated location by our method. The user
study is first conducted on 360� query images. We exclude
the rare (#) ‘unknown’ samples and use the remaining
images for the evaluation. From the results in Fig. 14, it can
be seen that our method helps to correct the GPS drifting
problem. The experiments on localizing 180� FoV images

Fig. 13. Visualization of estimated orientation for ground images with
FoV = 360� and 180�. In each of the subfigures, the satellite images are
on the left and the ground images are in the middle. We visualize the
transformed satellite features and the correlation results (red curves) in
the right column. The positions of the correlation maxima in the curves
corresponds to the orientation of the ground images.

TABLE 7
Comparison of Localization Performance When Ablating the Transforms for Orientation Estimation

Orien. Est. FoV=360� FoV=180� FoV=90� FoV=70�

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA
Polar 78.61 90.32 93.34 98.56 53.88 72.43 79.10 94.48 10.85 24.16 32.11 66.06 5.49 14.61 21.15 55.47
Proj 78.57 89.90 93.00 98.37 52.00 69.82 76.28 92.28 10.74 23.69 31.37 65.49 5.61 15.31 22.20 56.89

Combined 78.94 90.31 93.42 98.67 54.27 72.78 79.54 94.73 11.30 26.00 34.23 69.03 5.85 15.71 23.13 59.34

CVACT_val
Polar 73.11 85.56 88.74 95.41 52.71 70.45 76.83 91.11 13.45 26.31 33.26 61.91 3.80 10.65 15.26 40.54
Proj 72.73 85.02 88.12 94.65 50.54 67.83 73.67 87.97 12.13 23.12 29.19 55.31 4.12 11.19 15.62 41.90

Combined 73.06 85.73 88.76 95.44 52.98 71.18 77.36 91.61 14.34 27.90 35.18 64.86 4.60 12.73 17.99 46.86

Fig. 14. User study results for fine-grained camera localization (orienta-
tion aligned). In this evaluation, users are asked to determine whether a
location is correct or not. The color cyan indicates the portion of data
where both GPS and our estimated locations are correct. The red bar
“Neither” indicates the portion of data that cannot be localized when the
FoV decreases from 360� to 180�.
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are conducted on the same image set. We found that around
8% of the query images cannot be localized when their FoV
decreases from 360� to 180�, marked as “Neither” in Fig. 14.
This is due to the increasing ambiguity when FoV decreases.

Wepresent a failure case of ourmethod in Fig. 15. As seen in
the middle of the projected satellite image at the GPS location,
the pixels from the tree canopies occlude the road pixels under-
neath. Those pixels are not similar to the pixels in the query
image at corresponding positions. However, humans still can
infer that the two images are at the same location, by leveraging
the visible surrounding content and the geometric correspond-
ences. In contrast, the SSIM metric only measures the overall
pixel-wise similarity between the two images. It cannot handle
pixels that are visually different but geometrically consistent.
Thus, it yields a low similarity value between the image pro-
jected at the GPS location and the query image. Instead, it
regards the image projected at a different coordinate (-20, 8) as
themost similar one to the query image, since the road pixels in
the two images align well and they account for a significant
fraction of the image. As a result, our method fails to localize
the correct location in this case.

Orientation Estimation.We also investigate the accuracy of
the orientation estimation of our method when the camera
location is known. Here, the ground-truth location informa-
tion is obtained from the previous stage of the user study,
rather than the noisy GPS provided by the dataset. We gen-
erate query images by rotating the aligned images randomly
along the azimuth direction and storing the rotation as the
ground-truth orientation. The results in the second row of
Table 8 indicate that the accuracy of orientation estimation
is satisfactory when the query images have a 360� FoV.
However, the accuracy decreases significantly when the
FoV of the query images decreases to 180�. Fig. 16 presents
a failure case of the orientation estimation for 180� FoV
images. As shown in the figure, the scene contents at the
estimated orientation are very similar to those at the
ground-truth orientation (i.e., the query image), making the
orientation estimation rather ambiguous.

Joint Location andOrientation Estimation.Herewe evaluate the
overall performance of our method on joint location and orien-
tation estimation for fine-grained camera localization. The

experiments are conducted on the images of which users can
confidently determine whether the GPS location or our esti-
mated location is correct, and we use the ground-truth pro-
vided by the user study participants for this evaluation. For
location estimation, we consider localization within 
5 pixels
(
1:4meters) as a success. The results are presented in the third
row of Table 8. The first row of Table 8 shows the localization
performance of ourmethodwhen orientation is given. It can be
seen that the joint estimation task is much more challenging,
since the ambiguity of the problembecomes even severe.

6 LIMITATIONS

Our method assumes that the image plane of the query cam-
era is perpendicular to the ground plane. The tilt (elevation)
and roll angles of the ground cameras in the current data-
sets are approximately zero. Thus, the sensitivity of our
method to these angles is not investigated.

For the fine-grained 3-DoF camera localization from sat-
ellite images, there is considerable space for our method to
improve. The pixel-wise SSIM similarity used by our
method is not robust to severe occlusions between the
ground and satellite images. It could be replaced by a
higher-level content similarity metric. Improving the run-
time is also an important aspect. For example, a more
sophisticated searching strategy instead of the exhaustive
searching is required to find the camera location within a
selected region.

7 CONCLUSION

In this paper, we proposed an effective two-stage algorithm for
ground-to-satellite image geo-localization, which can handle
complex cases where neither location nor orientation are
known. In contrast to many existing methods, our algorithm
provides accurate 3-DoF (location and orientation) camera
localization results. Specifically, our method includes a coarse
localization stepwhich retrieves themost similar satellite image
from the database given a query image, and a fine-grained

Fig. 15. A failure case of the location estimation produced by our method in fine-grained 360�-FoV camera geo-localization (given orientation). In this
case, our method mistakenly regards the satellite image projected at the coordinate (-20, 8) rather than the GPS location as the most similar to the
query image.

TABLE 8
The Performance of Our Method for Fine-Grained

Camera Localization

Loc Orien FoV=360� FoV=180�

Loc_acc (%) Orien_acc(%) Loc_acc(%) Orien_acc(%)

✗ ✓ 75.29 – 56.46 –
✓ ✗ – 95.31 – 70.83
✗ ✗ 50.59 65.88 24.53 66.04

Fig. 16. A failure case of the orientation estimation produced by our
method in fine-grained 180�-FoV camera localization (given location).
The scene structure at the predicted orientation is very similar to that of
the query image.
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localization step which computes the displacement between
the query ground camera location and the retrieved satellite
image center. The orientation alignment between satellite and
ground images in both steps is evaluated. In contrast to our pre-
vious works, we established more authentic geometric corre-
spondences between satellite and ground images using a
projective transform. By exploring the geometric correspond-
ences, we successfully boost the coarse localization perfor-
mance in terms of higher location recalls, and provide a novel
method for accurate 3-DOF camera localization.
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