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CBAREF: Cascaded Bundle-Adjusting Neural
Radiance Fields From Imperfect Camera Poses

Hongyu Fu”, Xin Yu

Abstract—Existing volumetric neural rendering techniques,
such as Neural Radiance Fields (NeRF), face limitations in
synthesizing high-quality novel views when the camera poses of
input images are imperfect. To address this issue, we propose
a novel 3D reconstruction framework that enables simultaneous
optimization of camera poses, dubbed CBARF (Cascaded Bundle-
Adjusting NeRF). In a nutshell, our framework optimizes camera
poses in a coarse-to-fine manner and then reconstructs scenes
based on the rectified poses. It is observed that the initialization
of camera poses has a significant impact on the performance
of bundle-adjustment (BA). Therefore, we cascade multiple BA
modules at different scales to progressively improve the camera
poses. Meanwhile, we develop a neighbor-replacement strategy to
further optimize the results of BA in each stage. In this step, we
introduce a novel criterion to effectively identify poorly estimated
camera poses. Then we replace them with the poses of neighboring
cameras, thus further eliminating the impact of inaccurate camera
poses. Once camera poses have been optimized, we employ a density
voxel grid to generate high-quality 3D reconstructed scenes and
images in novel views. Experimental results demonstrate that our
CBAREF model achieves state-of-the-art performance in both pose
optimization and novel view synthesis, especially in the existence
of large camera pose noise.

Index Terms—3D Reconstruction, novel view synthesis, neural
radiance fields, bundle-adjustment, camera pose registration.

I. INTRODUCTION

HREE Dimensional Reconstruction [1], [2], [3], [4],

[5], [6] and Novel View Synthesis [7], [8], [9], [10],
[11] are essential tasks in computer vision [12]. They aim to
reconstruct 3D scenes from the given 2D RGB images and
render photo-realistic images in novel views. Inspired by the
success of Neural Radiance Fields (NeRF) [11], volumetric
neural rendering methods have gained significant popularity in
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Fig. 1. Learning 3D scene representations relies on accurate camera poses
of input images. However, coping with inaccurate or incomplete camera poses
imposes a challenge. Our proposed CBARF tackles this problem by effectively
reducing large camera pose noise and estimating missing camera poses.

the field of 3D reconstruction in recent years. However, one
limitation of existing methods is the requirement for accurate
camera poses corresponding to each input image. In other
words, when the input camera poses contain noise or are even
completely unknown, these methods might fail to reconstruct
scenes or generate high-quality novel views.

The recent work BARF [13] attempts to solve camera registra-
tion and scene reconstruction jointly. BARF can be considered
as a variant of photometric Bundle-Adjustment(BA) [14], [15],
[16], [17], [18] with view synthesis serving as a proxy objec-
tive. BARF can effectively correct camera poses with moderate
noise and reconstruct scenes when camera poses lie in restricted
3D space, e.g., sharing similar orientations and lying on a com-
mon 2D plane. However, when registering camera poses in a 3D
free space, BARF might fail due to the increased optimization
difficulty of the joint estimate of camera poses and scene recon-
struction. We observe that even when cameras are distributed in
a 3D hemispherical space and face an object positioned at the
center, BARF cannot handle camera pose noise and produces
inferior reconstruction results. Moreover, in some cases, input
images do not have the corresponding camera pose information.
For instance, when COLMAP [6] might fail to estimate cam-
era poses for some images, these images will not be used for
scene reconstruction. This would lead to inferior reconstruction
results, such as some parts of scenes are missing.

To address these issues, we propose Cascaded Bundle-
Adjusting Neural Radiance Fields (CBARF), a novel approach
to reconstructing scenes from inaccurate or partially un-
known camera poses (Fig. 1). Our CBARF model adopts a
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coarse-to-fine manner. In each scale, CABRF first updates
camera poses by a BA module. Subsequently, we design a
novel criterion to identify poorly estimated poses that still have
not been rectified after BA optimization. We then introduce a
neighbor-replacement strategy to update these inaccurate poses.

Specifically, we find that optimizing camera poses with ex-
cessive iterations is computationally costly and does not lead
to better performance. Thus, we introduce a compact BA mod-
ule by modifying the basic BA module to accelerate the pose
optimization process. Due to the substantial influence of the ini-
tialization state of camera poses on BA, we adopt the preceding
pose estimation results as the initialization for the subsequent
BA module. As a result, we cascade multiple compact BA mod-
ules in series, forming the backbone of our CBARF model. The
number of cascades in our model is adaptive to avoid insufficient
or excessive optimization rounds.

To further enhance the performance of the cascaded BA, we
introduce a neighbor-replacement strategy between each pair of
BA modules. This strategy involves replacing inaccurate cam-
era poses with poses from neighboring viewpoints. Due to the
absence of ground-truth camera poses, we design a novel crite-
rion to identify potentially inaccurate camera poses based on the
quality of rendered images in the corresponding views. In addi-
tion, we incorporate non-maxima suppression [19], [20], [21] to
enhance the identification of inaccurate poses. The final refined
poses are provided into a density voxel grid [22], facilitating the
generation of high-quality rendered images for the purpose of re-
sult comparison. We conducted a comprehensive evaluation and
comparison of our approach on the NeRF-synthetic [11] and
BlendedMVS [23] datasets. Our results demonstrate that our
approach achieves a new state-of-the-art performance in opti-
mizing camera poses from noisy or insufficient initial estimates.

Overall, the contributions of our work are summarized as fol-
lows:

® We propose a robust coarse-to-fine 3D reconstruction
framework that effectively optimizes camera poses in the
presence of significant noise. Our model exhibits the ca-
pability of handling images with noisy camera pose infor-
mation.

® We demonstrate that the initialization of camera poses is
crucial for bundle-adjustment (BA) performance, and we
propose the cascaded BA to progressively refine the inac-
curate camera poses.

e We propose a neighbor-replacement strategy to improve
the optimization process by identifying and replacing in-
accurate camera poses with the poses of their neighboring
cameras.

II. RELATED WORK

Structure from Motion: Structure from motion (SfM) sys-
tem [6], [24], [25], [26], [27], [28], [29], such as the
COLMAP [6] aims to estimate the camera poses and recover the
3D structure from the given a set of inputimages. Since SfM only
needs RGB images without any pose or depth information as in-
put, it has been widely used to reconstruct sparse point clouds
and recover camera poses. Many works on SfM achieve great
success such as COLMAP [6] and OpenMVS [24]. However,
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most SfM systems rely on detecting and matching distinctive
key-points. Thus, they may fail to reconstruct scenes, especially
in regions with less texture or repetitive patterns.

Neural Radiance Field: With the continuous advancement of
deep learning techniques, neural networks have found wide ap-
plications in 3D reconstruction and novel view synthesis [30],
[311,[32], [33], [341], [35], [36], [371, [38], [39], [40], [41]. NeRF
(Neural Radiance Field [11]) is one such technique. NeRF aims
to learn scene representation inside an MLP and synthesize novel
views directly via differentiable volume rendering. Due to its
photo-realistic rendering capabilities, NeRF has gained a lot of
attention in various fields, such as high-quality head reconstruc-
tion [42], [43]. Many researchers have explored ways to improve
its performance and address its weaknesses [13], [22], [44], [45],
[46], [47], [48], [49], [50], [51]. Some works aim to predict a
continuous neural scene representation from a sparse set of input
views. PixelNeRF [44] employs a fully convolutional approach
for processing image inputs, enabling the network to be trained
across multiple scenes and learn a scene prior. This facilitates
generating novel view synthesis conditioned on a limited num-
ber of input images. Many researchers have attempted to ac-
celerate the training process of NeRF. Plenoxels [45] achieves
comparable performance to NeRF but with a significant speed
improvement, being approximately 100 times faster. It utilizes a
sparse voxel grid representation, where each voxel is associated
with density and spherical harmonic coefficients. DVGO [22]
further advances NeRF and 3D scene representation. By using a
voxel grid representation rather than an MLP, DVGO can signif-
icantly accelerate the rendering process compared to traditional
methods. However, those existing volumetric neural rendering
methods require a set of images with accurate poses as input.
They may fail to synthesize high-quality novel views when cam-
era poses contain some noise.

Extended NeRF with Inaccurate Poses: Several works aim to
reduce the reliance on highly accurate camera poses. BARF [13]
is a type of photometric bundle adjustment (BA) based on view
synthesis. BA is a fundamental technique in computer vision and
photogrammetry used to refine the parameters of a 3D recon-
struction model and the camera poses simultaneously. It aims
to minimize the reprojection error between the observed 2D
points in multiple images and their corresponding 3D points
in the scene. BARF adapts the principles of BA to refine the
neural scene representations and register camera frames in the
context of training NeRF from imperfect or unknown camera
poses. Unlike traditional bundle adjustment methods, BARF
can learn scene representations from randomly initialized net-
work weights, which diminishes the reliance on local regis-
tration sub-procedures. By incorporating BA techniques into
the optimization process, BARF aims to address the limita-
tions of NeRF and enable the learning of accurate 3D scene
representations.

L2G-NeRF [52] employs a local-to-global strategy to ad-
dress neural field reconstruction and camera pose registration
jointly. It demonstrates the sensitivity of bundle-adjustment
against initialization in neural fields and thus adopts an effec-
tive local-to-global registration strategy. GARF [49] introduces
a new positional embedding-free neural radiance field archi-
tecture with Gaussian activation to solve the joint problem of
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reconstruction and pose estimation. SPARF [50] exploits multi-
view geometry constraints to learn the scene representation and
refine the camera poses jointly from sparse viewpoints. NeRF—
[51] optimizes camera poses as learnable parameters with NeRF
training through a photometric reconstruction on forward-facing
datasets. CamP [53] designs a preconditioning matrix to nor-
malize the effects of each camera parameter on the projection
of points in a scene and decorrelate the effects of each camera
parameter from others. By doing so, CamP can recover camera
parameters and challenging scenes. DBARF [54] jointly opti-
mizes GeNeRFs (Generalizable Neural Radiance Fields [55])
and relative camera poses, and demonstrates generalizability
across scenes without requiring per-scene fine-tuning. Flow-
Cam [56] employs differentiable rendering to lift frame-to-frame
optical flow to 3D scene flow, enabling online joint optimization
of camera poses and 3D neural scene representations.

However, these methods still fail to learn scene represen-
tations when camera poses contain severe noise in a 3D-free
space. Therefore, our proposed CBARF is designed to efficiently
reconstruct 3D scenes with inaccurate or insufficient camera
poses.

III. PROPOSED METHOD

This work addresses the challenge of synthesizing novel
views under conditions where certain input camera poses con-
tain significant noise or are even unknown. Thus, we propose
CBARE, a novel framework incorporating several simple yet
effective strategies, to optimize camera poses and learn 3D
scene representations. In this section, we first introduce the
cascaded BA in Section III-A. Similar to other gradient de-
scent algorithms, cascaded BA is prone to over-fitting when the
initial camera poses have significant errors. We then present
the neighbor-replacement strategy in two separate parts, detail-
ing the process of identification and replacement of erroneous
camera poses. In Section III-B, we design a novel criterion to
detect erroneous camera poses arising from over-fitting dur-
ing the BA process. Since ground-truth poses are unknown,
this method identifies the potentially inaccurate poses based
on the quality of their corresponding rendered images. We
introduce the procedure for replacing these identified erro-
neous poses in Section III-C. This technique rectifies inaccu-
rate camera poses by replacing them with poses of neighboring
cameras.

A. Cascaded BA

Employing bundle-adjustment methods [13], [14], [15], [16],
[17], [18] under conditions where the initial camera poses
deviate significantly from ground-truth may result in broken 3D
structure and failure pose estimation. The sub-optimal perfor-
mance of some BA models such as BARF [13] may be attributed
to the over-fitting of the neural radiance field network. Specif-
ically, BARF generates novel view images by an MLP and uses
the synthesized images as the proxy objective to update camera
poses in an alternating manner. However, when some input poses
contain large deviations, it may learn an incorrect scene repre-
sentation, leading to an erroneous optimization and preventing
the model from self-correcting. In essence, the BA model
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heavily relies on accurate initial poses to establish a reliable
starting point for reconstruction and optimization.

In some other optimization tasks [57], [58], [59], [60], [61],
[62], multi-stage structures are employed for iterative refine-
ment and improved performance. Inspired by this concept, we
propose cascaded BA, a multi-stage framework incorporating
several compact BA modules connected in series. In cascaded
BA, the camera poses estimated from the previous stage are uti-
lized as the initialization for the subsequent stage. In this way,
the model coarsely eliminates cumulative errors and results in
more accurate pose estimation for the subsequent process. The
compact BA module is based on BARF [13]. However, BARF
takes much training time to complete the reconstruction. Since
high-quality reconstruction is not essential for coarsely optimiz-
ing camera poses, we reduce the training iterations of the com-
pact BA module. We also adjust the learning rate to match the dif-
ferent training stages. Consequently, We adopt a coarse-to-fine
manner consisting of coarse, recursive, and fine stages (Fig. 2).
The number of compact BA modules is adaptive and depends
on the characteristics of the datasets. Specifically, we employ
a loop detection technique in the recursive stage to assess the
current optimization effectiveness and determine the number of
compact BA modules. This helps us avoid insufficient or exces-
sive optimization rounds, ensuring an optimal balance for the
performance of the model.

Our experiments show that multi-stage BA rectifies inaccurate
poses more efficiently than single-stage BA during the same
training time. As shown in Fig. 3, the cascaded BA without
neighbor-replacement (indicated by the red curve) reduces the
amount of camera pose noise than single-stage BA (indicated
by the blue curve). The single-stage BA quickly falls into a sub-
optimal solution, while the cascaded BA exhibits an improved
optimization result. Moreover, the green curve, cascaded BA
with neighbor-replacement (Section III-C), demonstrates a more
significant reduction in noise.

B. Erroneous Pose Detection

This module aims to overcome the challenge of identifying
inaccurate camera poses without ground-truth. It involves
generating view synthesis using the current pose estimates and
accessing the quality of the rendered images. Inferior rendering
quality consistently indicates inaccuracies in the corresponding
camera poses. However, we observe that rendering errors caused
by inaccurate camera poses are prone to be confused with noise
introduced by the model, especially when using conventional
image evaluation algorithms [63], [64], [65] for evaluation.
Additionally, even minor inaccuracies in camera poses can
result in pixel-level displacements in the rendered images.
As a result, conventional image evaluation methods predom-
inantly based on pixel comparisons might consequently lead
to erroneous assessments. Some other methods aim to identify
erroneous camera poses. The rotation averaging [66] estimates
the absolute orientations of cameras or views in a way that best
agrees with a set of pairwise relative orientations. However,
in our task, rotation averaging is not a very applicable method
because obtaining accurate relative orientations is challenging.
Consequently, we introduce a novel criterion primarily based
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figure, the cascaded BA consists of three compact BA modules, with each module
set to 20 k iterations. The single-stage BA is configured with 60,000 iterations,
matching the total number of iterations used in the cascaded BA. The green curve
represents the cascaded BA with neighbor-replacement at each cascaded node,
while the red curve represents the cascaded BA without neighbor-replacement.
The blue curve represents the single-stage BA. The single-stage BA quickly falls
into a sub-optimal solution, while the cascaded BA exhibits fluctuations at the
cascaded nodes, resulting in a better final result.

on ORB key-point [67] to overcome the disadvantages of con-
ventional evaluation methods. Additionally, we design several
supplementary strategies to improve the accuracy and reliability
of the criterion. As illustrated in Fig. 4, our combined criterion
exhibits superior correlation with camera pose errors when
compared to other conventional image evaluation methods.
ORB (Oriented FAST and Rotated BRIEF) [67] is a feature
detection and description algorithm used in computer vision and

reference pose error combined loss
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Fig. 4. Comparison between several evaluation methods. The x-axis of each
chart represents the identification numbers of different views, while the y-axis
represents normalized error values. The first chart (in red) illustrates the distribu-
tion of camera pose errors at different views, while the remaining charts display
the distribution of rendered image errors calculated by various image evalua-
tion methods. Compared to other traditional loss, our combined loss exhibits a
stronger correspondence between rendered image errors and camera pose errors.
This demonstrates the superior capability of our method to identify inaccurate
camera poses.

image processing. It is similar to the SIFT (Scale-Invariant Fea-
ture Transform) [68] algorithm, but is designed to be faster and
more efficient. In our method, the rendered images used for
matching exhibit low quality, which could be a potential reason
for the failure of other matching algorithms such as SIFT or
LOFTR [69]. However, we find that ORB is suitable for finding
and matching key-points between rendered images and reference
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images in our task. Additionally, we propose several supplemen-
tary techniques to enhance the accuracy of key-point matching.

e K-Nearest Neighbors: In order to effectively identify the
matched key-points between reference images and ren-
dered images, we employ the K-Nearest Neighbors (KNN)
algorithm [70]. For each key-point in the rendered image,
we compute its feature distance with all the key-points in
the reference image. Subsequently, we identify the point
with the shortest distance as a potential match and com-
pare its feature distance with others. A dependable match
generally shows a significantly shorter feature distance
compared to non-matching points. Consequently, poten-
tial matches without a notably shorter feature distance are
disregarded.

® PBidirectional Check: We use a bidirectional check [71],
[72] between rendered images and reference images to
further improve the accuracy of the key-point matching.
In detail, for each key-point p; in the rendered image, we
conduct a search to find the best matching point p,, in the
reference image. Additionally, we traverse the rendered im-
age to confirm whether p; is also the best matching point
for p,,. We only retain the reliable matches, where two
points serve as each other’s best matching points.

e Coordinate Constraints: In some cases, inaccurate cam-
era poses result in scenes being rendered from an incorrect
viewpoint, while still generating visually high-quality im-
ages. In the overlapping regions of the scene captured from
different viewpoints, there are numerous shared key-points
at different pixel positions. Since the matching method re-
lies on feature distances rather than pixel positions, these
displaced key-points may be incorrectly matched. This re-
sults in overlooking some inferior rendered images caused
by perspective errors. To address this issue, we incorpo-
rate coordinate constraints for key-point pairs. Specifically,
when a pair of matched key-points exhibits a significant co-
ordinate separation, we classify them as unreliable matches
and discard them to exclude perspective errors.

To address the issue of insufficient ORB key-points, we sup-
plement the criterion with RGB-MSE. MSE (Mean Squared Er-
ror) is acommon loss function used in regression problems [73].
It measures the average squared difference between the predicted
output and ground-truth. However, directly using RGB-MSE in
our task yields unsatisfactory results. We observe that variations
in the foreground-to-background ratio can impair the indicative
values of MSE across different viewpoints. Therefore, we intro-
duce a compensation factor to address this issue. The revised
MSE can be described as

IN 1 &
f— — —— ¢ — A. 2
MSE, = NN ;Zl(yl Ui)° (1)

where Ny represents the number of pixels in the foreground
of the reference image, and N represents the total number of
pixels. y; represents the pixel value of ground-truth image while
y; represents the rendered image. We use the foreground masks
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provided by the dataset to differentiate between the foreground
and background.

In the final step, we utilize the combined criterion to assign
scores for all the rendered images obtained from the current pose
estimates. By analyzing these scores, we identify the low-quality
images and their corresponding camera poses. The poses are
considered to contain a high level of noise and will be further
optimized in neighbor-replacement ITI-C.

C. Neighbor-Replacement

The neighbor-replacement technique involves replacing the
camera poses identified as low-quality in Section III-B with their
respective neighbors. Specifically, we first denote Q = {g|k =
1,2,...,N} as all views from the input set. Note that we have
labeled each gy, as either ‘superior’ or “inferior’ in Section I1I-B.
We denote them as g5 € Q; and ¢; € Q;, respectively.

However, we observe that inaccurate camera poses have a
detrimental effect on the rendering not only in their correspond-
ing viewpoints but also in neighboring viewpoints. This in-
terference can arise from the model learning incorrect scene
representations in the relevant regions. Consequently, our pro-
posed criterion in Section III-B may erroneously identify some
accurate camera poses as low-quality due to the broken scene
representations caused by neighboring inaccurate poses. To ad-
dress this issue, we introduce non-maxima suppression [19],
[20], [21] after identification. Specifically, when multiple neigh-
boring camera poses are assigned low scores and the ratio be-
tween the lowest score and other scores is below a specified
threshold (set at 0.7 in our case), it is probable that only the cam-
era pose with the lowest score is inaccurate. Other camera poses
are mistakenly labeled as low-scoring poses. However, even in
this scenario, the non-lowest-scoring camera poses can still be
incorrect and mistakenly excluded. Nevertheless, our CBARF
is designed as a multi-stage structure. In our experiments, when
an erroneously optimized pose is excluded in a stage, it is likely
to be filtered out in the subsequent stages. Thus, we update the
classification of ‘superior’ and ’inferior’ in set Q by discarding
misidentified camera poses. We denote the updated classifica-
tions as Q, and Q;, respectively.

For each inferior view ¢; in set Q;, we search for the nearest
neighbor view ¢g;,,; in the set Q. We adopt the combined crite-
rion introduced in Section III-B to measure and rank the similar-
ity between ¢; and each ¢;. We additionally perform matching
on the rotated images with their corresponding camera poses
equivalently rotating [74]. This approach expands the search
space and improves the accuracy of neighbor-matching results.
The camera poses in set QQ; are then replaced with their nearest
neighbor in set Q. As aresult, we obtain an updated set of cam-
era pose estimates denoted as Q = {gi|k =1,2,...,N}. The
@ is more reliable for further optimization.

However, the effectiveness of replacement depends on the
accuracy of neighbor-matching. A mismatched neighboring
camera pose may be replaced rapidly, leading to eventual op-
timization failure. Even with the enhancement measures in Sec-
tion III-B, some matching results may still be incorrect. Hence,
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Fig.5. Qualitative results of CBARF with different module compositions. We
test CBARF without the neighbor-replacement or the fine stage, and visualize
the image synthesis at estimated poses. CBARF achieves comparable synthetic
quality to the ground-truth, indicating successful pose optimization. On the other
hand, the absence of the neighbor-replacement or the fine stage resulted in sub-
optimal registration, leading to synthesis artifacts in rendered images.

we introduce a replacement-memory technique to prevent redun-
dant erroneous replacements. For each erroneous viewpoint, we
keep track of the pose used for replacement and skip poses that
have already been utilized. This prevents the optimization pro-
cess from getting stuck due to inaccurately matched neighboring
camera poses.

By replacing the inferior camera poses with more accurate
ones, the neighbor-replacement technique improves the initial-
ization effect of each phase in the cascaded BA and significantly
enhances the overall performance of the model. As shown in
Fig. 3, the cascaded BA with neighbor-replacement (indicated
by the green curve) effectively reduces the camera pose noise
after each cascaded node, ultimately reaching an extremely low
level. Improved camera pose estimation results in higher ren-
dering quality. Fig. 5 illustrates the rendering performance of
CBAREF with different module compositions. Benefiting from
the Neighbor-Replacing module and the coarse-to-fine man-
ner, CBARF achieves comparable rendering performance to the
ground-truth.

IV. EXPERIMENTS

In this section, we first validate the effectiveness of our pro-
posed CBARF in pose registration and view synthesis when
dealing with noisy camera poses. Subsequently, we evaluate
CBARF’s capability of learning scene representations from in-
complete camera pose data.

A. Optimizing Noisy Camera Poses

Experimental settings: We conduct evaluations on the NeRF-
synthetic dataset [11] with image resolutions of 800x800. The
camera poses are described by the Lie group SE(3) [75]. The

9309

Initial Translation Errors
0.05 0.15 0.25 0.35

- olitp <Bip g Ve
v ot oite e B0
ot Btp Ute Ve
 otigg <tieg <ty ofn 2

Fig. 6. Visualization results of 3D reconstruction with BARF under different
levels of initial camera pose rotation errors and translation errors. Significant
degradation is observed when the rotation error reaches 0.25 or the translation
error reaches 0.35.

BARF

CBARF (Ours)

Initial Rot. Errors:  0.35
Initial Trans. Errors: 0.35

Lie group can be defined as

R t

SE@) =4 |4r

eRYR € SO3),teR3}, (2)

where the R represents the rotation matrix and t represents the
translation matrix. SO(3) [76] refers to the special orthogonal
group in three dimensions and often be used to describe the
rotations. Note that we drop the last row in the Lie group, so the
camera poses P is

P- {{Rp t,,] e R¥IR, € SO(3),t, € RS} G

To simulate inaccurate camera poses, we introduce noise n €
s¢(3) by generating 6-dimensional random normal distribution
noise based on the Lie algebra [75]. We set the noise coefficient
to 0.35 for our method, while it is set to 0.15 in BARF [13].
Increasing the noise coefficient presents more challenges for
camera pose optimization. As shown in Fig. 6), the performance
of BARF significantly degrades when the rotation error reaches
0.25 or the translation error reaches 0.35. When both rotation
and translation errors reach 0.35 (as we set in Section IV-A),
BAREF struggles to synthesize recognizable images from new
viewpoints. In contrast, our method CBARF is robust against the
camera pose noise. The noise n in our method can be described
as

n = 0.35M(0,1) € RE. (4)

It corresponds to an average deviation of 30.4° in rotation and
0.56 in translation. We then transform the noise n into the cam-
era transform matrix N = [Rn tn} . We compose it with the

reference camera pose P to get the imperfect camera poses P
as

P = [R,Ry t,+t]. 5)
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In particular, we optimize the camera poses by training the
camera refine parameters p € se(3). We then convert it into cam-

era transform matrix P, = [RT tr] to compose with the P.
In this way, we obtain the refined camera poses as

Q= [R,R.R, b+t 41, ©)

Implementation Details: In this paper, we propose a coarse-
to-fine structure (Fig. 2) to optimize camera poses and recon-
struct 3D scenes. For each compact BA module, we choose the
BAREF network [13] as our backbone. We follow the architec-
tural settings from the original BARF with some modifications
and adopt a coarse-to-fine strategy for each optimization stage.
Specifically, in the coarse stage and the recursive stage, the it-
eration for the compact BA module is set to 20 k, while in the
fine stage, it is 100 k. The total iteration is about 160 k, which
takes about 7 hours for training in synthetic object. To further
improve training efficiency, we reduce the image sizes by half
during the pose optimization stage, resulting in resolutions of
400x400. Similar to BARF [13] and NeRF [11], we employ
exponential interpolation [77], [78] to calculate a gradually de-
creasing learning rate. Additionally, we introduce a modulation
factor to determine the degree of deviation from the initial value.
A larger modulation factor biases the overall learning rate more
towards the initial high value. Setting the modulation factor to
1.0 corresponds to using the original exponential learning rate.
In the three stages of the cascaded BA, the modulation factors
were set to 10.0, 3.0, and 1.0, respectively. In the Voxel Grid
Module, DVGO [22] is employed to generate synthetic images
with optimized camera poses for evaluation.

Evaluation Metrics: We evaluate the performance of our
model in two main aspects: camera pose error for pose opti-
mization and view synthesis quality for scene representation.
For camera pose evaluation, we measure the rotation error and
translation error separately to assess the accuracy of the opti-
mized camera poses. In terms of view synthesis evaluation, we
employ several metrics including PSNR, SSIM and LPIPS [65]
to provide quantitative measures of the similarity between the
synthesized images and the reference images.

The reference camera poses are only used during the evalua-
tion process to calculate the errors and are not used as supervi-
sion during the optimization process. As a result, the optimized
camera poses may have a global offset from the ground-truth
values. The global offset can be thought of as the combination
of overall rotation and translation. It does not affect the learn-
ing of scene representation, but it can introduce a misalignment
between the coordinate system of the optimized camera poses
and the ground-truth. This misalignment may lead to incorrect
evaluations of pose optimization and scene reconstruction qual-
ity. Thus, we use Procrustes analysis [79] to align the optimized
poses with the ground-truth before evaluation. Procrustes anal-
ysis is a common technique used to align two sets of data points
by minimizing the difference between them. By calculating the
global offset through Procrustes analysis, we can align the opti-
mized camera poses to the ground-truth and accurately calculate
the rotation and translation errors of the optimized camera poses.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024
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Fig.7. Visualization of the pose optimization result in NeRF- synthetic dataset.
Each figure shows the translation errors between ground-truth camera poses and
the perturbed or optimized camera poses for the materials scene. The initial
noise coefficient is set to 0.35. BARF encounters overfitting before completing
the optimization, while CBARF successfully optimizes all camera poses. The
camera poses are aligned by Procrustes Analysis.

Additionally, we can also align the camera poses in the test set
for view synthesis evaluation.

Results: We incorporate the camera poses with added noise
as inputs to models and then perform optimization and recon-
struction. We calculate both pose error and rendering quality.
The visualization of the pose optimization result is shown in
Fig. 7. The results of rendering are visualized in Fig. 10 and the
quantitative metrics are reported in Table. I. The initial camera
poses exhibit an average deviation of 30.4° in rotation and 56.2
(scaled by 100) in translation. As depicted in Table. I, CBARF
consistently outperforms the baseline method BARF in terms
of camera pose optimization. Additionally, our method demon-
strates higher accuracy in estimating camera poses compared to
the reference model COLMAP [6]. The rendering results of our
method, as illustrated in Fig. 10, exhibit comparable quality to
the ground-truth images.

While our CBARF employs a cascaded structure, the model
size is comparable with the state-of-the-art (about 7 MB for
each stage). The total number of training iterations is around
260 k, which is slightly more than 200 k used in BARF. Our
experiments show that CBARF takes about 10 hours for train-
ing on synthetic objects, while training BARF takes about 8
hours. Moreover, our CBARF provides two fast modes (fast and
fast+), effectively enhancing training speed through a reduc-
tion of training iterations. As shown in Fig. 9, in the fast mode,
the training time for each scene is reduced to 7.5 hours (less
than 8 hours for BARF), while our image quality still remains
high-quality and is significantly better than BARF. In the fast+
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TABL

E1

QUANTITATIVE RESULTS ON SYNTHETIC OBJECT SCENES

Camera pose optimization View synthesis quality
Scene Rotation (°)] Translation] PSNRT SSIMT LPIPS|
BARF CBARF | BARF CBARF BARF CBARF ref. BARF CBARF ref. BARF CBARF ref.

Chair 5.208 0.099 15.24 0.479 17.08 27.94 34.09 0.801 0.927 0.976 | 0.181 0.038 0.027
Drums 5.748 0.042 19.21 0.148 12.69 25.29 25.42 0.714 0.928 0.929 0.287 0.080 0.079
Ficus 5.316 0.083 12.49 0.444 17.05 30.54 32.58 0.821 0.969 0.977 0.142 0.028 0.025
Hotdog 4.931 0.248 14.30 1.305 15.97 23.44 36.76 0.827 0.891 0.980 | 0.223 0.078 0.033
Lego 7.053 0.073 21.86 0.261 12.13 31.35 34.71 0.680 0.962 0.976 | 0.317 0.033 0.027
Materials 11.85 0.047 28.68 0.179 11.09 28.90 29.58 0.669 0.947 0.950 | 0.311 0.061 0.059
Mic 6.568 0.063 17.26 0.252 13.45 30.56 33.11 0.827 0.976 0.982 | 0.172 0.020 0.018
Ship 10.61 1.099 25.22 0.899 10.43 28.01 29.04 | 0.622 0.870 0.877 0.406 0.163 0.161
Mean 7.161 0.219 19.28 0.496 13.74 28.25 31.91 0.745 0.934 0.956 | 0.255 0.062 0.054

CBAREF achieves superior performance from noisy camera poses compared to the baseline methods. Moreover, CBARF maintains comparable view synthesis quality to
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the reference images rendered at the ground-truth camera poses. Translation errors in this table are scaled by 100.
The bold values represent the best results obtained among all methods (excluding reference values).
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Fig. 8.  Visualization of the pose optimization result in BlendedMVS dataset.
Each figure shows the translation errors between ground-truth camera poses and
the perturbed or optimized camera poses for the bear scene. Before training, 10%
of the camera pose data is discarded and reinitialized. BARF is ineffective in
optimizing these missing camera poses, while CBARF can successfully address
this challenge.

mode, our training time is even half of the time of the normal
mode, approximately 5 hours. Although PSNR scores decrease
slightly under two fast modes, CBARF is capable of generating
high-quality reconstruction results that are visually similar to
those of the version trained with 260 k iterations.

B. Optimizing Incomplete Camera Poses

Experimental settings: In this work, we conduct evaluations
on the BlendedMVS dataset [23]. The camera poses are esti-
mated by COLMAP [6]. To simulate the scenario where the
camera pose estimation fails or is unavailable for certain im-
ages, we randomly drop 10% of the camera poses and use the

BARF
~8 hours / 13.74

a

fast+ fast normal GT
~5hours/25.78 ~7.5hours/27.12 ~10hours/28.25 (training time / psnr)
" | " 4 ey

Fig.9. Visualization results of CBARF under three modes (fast+, fast, normal).
In fast mode, the training time for each scene is around 7.5 hours, which is less
than 8 hours for BARF, and the image quality is significantly better than that
of BARF. In fast+ mode, the training time is even half, approximately 5 hours,
compared to that of the normal mode. In these three modes, the visual quality
of their reconstructed results is similar.

remaining images as the test set /. The other images with cam-
era poses are grouped as 7. We then assign an initial camera
pose P;,,; to the images in F'. During the training phase, we use
both BARF and CBAREF to learn scene representation from 7’
and jointly optimize the camera poses of both groups, resulting
in 7" and F"’. Since there are no ground-truth camera poses for
evaluation, we use optimized poses in F’ to assess rendering
quality to estimate the camera pose error. In the testing phase,
we compare the rendering results generated using the camera
poses estimated by different models. This allows for a mean-
ingful comparison of the rendering quality between different
approaches.

Results: Due to the lack of ground-truth camera poses, it is
not possible to calculate the error of camera poses. We can only
calculate the rendered image quality to evaluate the performance
of different models. The results on the BlendedM VS dataset are
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Ground truth

Fig. 10.
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Reference

Qualitative results of rendering on NeRF-synthetic scenes. For each scene, the top row displays the synthesized images, while the bottom row shows

the estimated depth. To facilitate comparison, the reference images rendered at perfect camera poses are included on the rightmost column. CBARF achieves
high-quality rendering results comparable to the reference rendered images, whereas BARF produces blurry and incorrect renderings due to unsuccessful camera

pose optimization.

visualized in Fig. 11, and the quantitative rendering quality is
reported in Table. II. The visualization of the pose optimization
resultis shown in Fig. 8. We use the quality of rendered images as
an indirect measure to evaluate the pose optimization capability
of different models, as higher rendering quality highly probably
indicates more accurate camera pose estimation.

V. DISCUSSION

Our method addresses neural field reconstruction and cam-
era pose registration jointly. As discussed in Section II, there
are other 3D reconstruction methods involving pose opti-
mization similar to ours. We also conduct experiments with
GARF and L2G-NeRF. However, GARF focuses on handling
forward-facing datasets, meaning it can only optimize camera
pose correction in roughly 2D space. Therefore, GARF is un-
able to process the inward-facing data and thus fails to generate

appealing results. While L2G-NeRF significantly enhances the
capability of reducing camera pose translation errors, surpass-
ing BAREF, it diverges within a few iterations when the initial
camera poses contain significant rotation errors. In Fig. 12, we
present visual results of L2G-NeRF with an average camera pose
deviation of 30.4° in rotation and 0.56 in translation.

Despite the success of our methods, there are still areas for
improvement. CBARF has similar limitations to the reference
model BARF [13], including rigidity assumption and depen-
dence on initial pose information. Some studies [60], [80], [81],
[82] discuss pose estimation and tracking, while certain meth-
ods [83], [84] draw inspiration from these pose estimation con-
cepts. These methods pre-train a pose estimator, enabling them
to perform joint registration and reconstruction on unposed im-
ages. Specifically, GNeRF [83] adopts Generative Adversarial
Networks (GANs) to extend the NeRF model. It first acquires
coarse camera poses and radiance fields through adversarial
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COLMAP

BARF

Ours

N

&N

Ground truth

Fig. 11.
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Rendering results of inward-facing scenes using incomplete BlendedMVS datasets, with 10% of the input images lacking camera pose information. We

employ various models to estimate the missing camera poses and generate rendered images at these poses. A closer resemblance between the rendered image and
the GT image indicates a more accurate estimation of the missing camera pose. BARF struggles to generate recognizable rendered images, while CBARF exhibits
comparable view synthesis quality to the ground-truth images. In most scenes, CBARF also outperforms the reference model COLMAP.

TABLE II
QUANTITATIVE EVALUATION OF THE RENDERED IMAGES OBTAINED AFTER OPTIMIZING THE UNKNOWN CAMERA POSES

View synthesis quality
Scene PSNRT SSIMT LPIPS|
BARF CBARF | COLMAP | BARF CBARF | COLMAP | BARF CBARF | COLMAP

Bear 10.64 23.85 21.68 0.525 0.718 0.698 0.583 0.318 0.339
Clock 8.75 16.68 9.74 0.443 0.672 0.539 0.593 0.415 0.542

Dog 10.11 19.43 19.25 0.377 0.680 0.669 0.597 0.341 0.351
Durian 10.33 25.09 25.87 0.302 0.789 0.809 0.752 0.292 0.279
Jade 11.57 22.31 17.54 0.681 0.812 0.684 0.424 0.234 0.375
Sculture 11.06 29.11 26.86 0.691 0.934 0.915 0.400 0.110 0.126
Stone 12.63 26.89 26.70 0.210 0.792 0.777 0.602 0.230 0.235
Mean 11.38 24.23 21.75 0.503 0.793 0.749 0.522 0.250 0.294

The rendering quality of images at the camera poses estimated by CBARF surpasses that of BARF and COLMAP. This indicates that
CBAREF successfully optimizes camera poses from incomplete datasets. Moreover, the camera poses estimated from CBARF are more

accurate than those estimated by other methods.

The bold values represent the best results obtained among all methods (excluding reference values).

%\ pertubedoptimied
42 Bmera poles

1\ ground-truth
Z2 Gamera poses

— translational error

(d) 200k iterations

(c) 1k iterations

(a) initial camera poses (b) 100 iterations

Fig. 12.  Visual result of L2G-NeRF with an initial camera pose deviation of
30.4° in rotation and 0.56 in translation. Under the condition of the initial camera
pose with significant rotation errors, L2G-NeRF diverges within a few iterations.

training and subsequently refines them jointly. IR-NeRF [84]
develops GNeRF with pose regularization to refine the pose esti-
mator with unposed real images. It constructs a scene codebook,
encoding scene features and implicitly capturing scene-specific

camera pose distribution as priors. It also introduces implicit
regularization to enhance the robustness of pose estimation for
real images.

However, these methods still rely on prior knowledge of cam-
era distribution, and their accuracy in camera pose estimation is
limited (Table III). In some scenarios, they may even fail to es-
timate camera poses and reconstruct scenes. We present visual-
izations of unsuccessful reconstruction results for GNeRF [83]
in Fig. 13. Thus, when camera pose priors exist and there is
a high demand for optimization precision, CBARF becomes a
preferable choice. Moreover, these pose-free methods involve
more complicated procedures, involving approximate camera
pose estimation, coarse NeRF learning, and collaborative re-
finement of both camera pose and NeRF. As a result, GNeRF
requires approximately 32 hours for training.
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TABLE IIT
QUANTITATIVE COMPARISON OF CAMERA POSES ACCURACY BETWEEN
GNERF, IR-NERF, AND CBARF (NOISE COEFFICIENT IS 0.35) ON THE
NERF-SYNTHETIC DATASET

Camera pose optimization
Scene Rotation (°)] Translation]
GNeRF IR-NeRF CBARF || GNeRF IR-NeRF CBARF

Chair 0.363 0.251 0.099 | 0.018 0.013 0.005
Drums 0.204 0.185 0.042 | 0.010 0.008 0.001
Ficus - - 0.083 - - 0.004
Hotdog 2.349 1.932 0.248 | 0.122 0.098 0.013
Lego 0.430 0.371 0.073 | 0.023 0.015 0.003
Materials - - 0.047 - - 0.002
Mic 1.865 1.598 0.063 | 0.031 0.019 0.003
Ship 3.721 3.253 1.099 | 0.176 0.125 0.009
Mean 1.489 1.265 0.219 | 0.063 0.046 0.005

We report rotation errors and translation errors of estimated camera poses after
training. GNeRF and IR-NeRF fail to reconstruct ficus and materials scenes.

The bold values represent the best results obtained among all methods (excluding-
reference values).

materials ficus )
& - - ”
© i £ 3
2 Sl .
RN
>
N <) o,
ingUele e §
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Fig. 13. 3D reconstruction results of GNeRF from unposed images. GNeRF

fails in certain scenes, such as ficus and materials, because GNeRF may not
initialize coarse poses when the images of a scene are highly similar.

VI. CONCLUSION

In this paper, we propose CBARF (Cascaded Bundle-
Adjusting Neural Radiance Fields), a novel 3D reconstruction
model aiming to effectively optimize imperfect camera poses.
We demonstrate the significance of camera pose initialization
for the performance of bundle-adjustment (BA). Consequently,
we introduce the cascaded BA to progressively refine the cam-
era poses. Then our proposed neighbor-replacement strategy
effectively rectifies erroneous poses that cannot be automati-
cally optimized in the BA process. We also design a novel cri-
terion to identify such poorly estimated poses without relying
on ground-truth. Our experiments demonstrate the superiority
of our CBARF model in both camera pose optimization and
novel view synthesis. Future research can explore extensions of
the CBARF model for more complex scenes and reduced re-
liance on initial pose information. We believe CBARF opens
up new possibilities for 3D reconstruction framework with un-
known camera poses.
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