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Can We See More? Joint Frontalization and
Hallucination of Unaligned Tiny Faces

Xin Yu", Fatemeh Shiri*”, Bernard Ghanem", and Fatih Porikli*, Fellow, IEEE

Abstract—In popular TV programs (such as CSl), a very low-resolution face image of a person, who is not even looking at the camera
in many cases, is digitally super-resolved to a degree that suddenly the person’s identity is made visible and recognizable. Of course,
we suspect that this is merely a cinematographic special effect and such a magical transformation of a single image is not technically
possible. Or, is it? In this paper, we push the boundaries of super-resolving (hallucinating to be more accurate) a tiny, non-frontal face
image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we
introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very-low resolution (i.e., 16 x 16 pixels)
out-of-plane rotated face images (including profile views) and aggressively super-resolve them (8x), regardless of their original poses
and without using any 3D information. TANN is composed of two components: a transformative upsampling network which embodies
encoding, spatial transformation and deconvolutional layers, and a discriminative network that enforces the generated high-resolution
frontal faces to lie on the same manifold as real frontal face images. We evaluate our method on a large set of synthesized non-frontal
face images to assess its reconstruction performance. Extensive experiments demonstrate that TANN generates both qualitatively and
quantitatively superior results achieving over 4 dB improvement over the state-of-the-art.

Index Terms—Face, super-resolution, hallucination, face frontalization
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INTRODUCTION

ECOVERING high-resolution (HR) face images from their

low-resolution (LR) counterparts, known as face hallu-
cination, has received significant attention in recent years.
Existing face hallucination methods mainly focus on super-
resolving nearly frontal faces, which provide critical percep-
tual information for the human visual system [1]. However,
in most cases, LR faces may not necessarily be frontal.
Super-resolving such non-frontal LR faces requires either
frontalizing them first and then applying existing face hallu-
cination techniques, or super-solving first (which highly
depends on an available pose-specific exemplar dataset)
and then frontalizing. Nevertheless, both of these options
are naturally very challenging.

Conventional and emerging face frontalization meth-
ods [1], [5], [6], [7], [8], [9], [10] often rely on facial land-
marks for warping 2D face images onto 3D models, and
thus require the input images to have a sufficient resolution
where such landmarks are detectable. This renders them
ineffective for tiny face images. Without a proper frontaliza-
tion, directly employing face hallucination methods [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]
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may cause severe artifacts due to large pose variations
and misalignments. As shown in Figs. 1 and 3, for very low-
resolution non-frontal face images, applying either face
frontalization followed by hallucination, or hallucination
followed by frontalization produces degraded results.

In this paper, we aim to jointly frontalize and hallucinate
a given input face image so as to avoid the artifacts pro-
duced by either of these tasks individually. To do so, we
present a new Transformative Adversarial Neural Network
(TANN) that automatically frontalizes the LR faces while
hallucinating the frontalized LR feature maps by an upscal-
ing factor of 8x in an end-to-end fashion. Considering that
an LR input face may undergo large pose variations and
misalignments as seen in Fig. 1, our motivation is to force a
non-frontal LR face to share the same latent representation
of its corresponding frontal LR face and then super-resolve
the latent representation. Thus, we first design a transfor-
mative subnetwork to encode a non-frontal LR face into a
latent representation, where the representation of the input
non-frontal LR face is forced to be similar to the latent repre-
sentation of its frontal counterpart in the latent subspace.
Then, we pass the latent representations, i.e., the frontalized
LR feature maps, through a subnetwork that is composed of
deconvolutional and spatial transformer layers [3], whose
goal is to generate HR outputs. Inspired by previous
works [22], [24], [25], [26], [27], we choose to employ an
adversarial network to make these HR outputs more closely
resemble real human faces.

In order to train our network, we not only employ the tra-
ditional pixel-wise image appearance similarity and class-
wise similarity constraints used in our previous works [2],
[22], but also develop a triplet loss to constrain the similarity
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Fig. 1. Comparison with the combination of face hallucination [2] and
frontalization [1] methods. (a) 16 x 16 LR non-frontal input image. (b)
128 x 128 HR original frontal image (not available in training). (c) The
best possible match to the given LR image in the dataset after compen-
sating for in-plane rotations by STN, [3]. (d) Detected landmarks by [4]
after bicubic upsampling. (e) Result obtained by applying [1] first and
then [2]. In [2], the first decoder and encoder are used to reduce image
noise. Hereby, we only use the second decoder of [2] for super-resolving
LR faces. (f) Result obtained by applying [2] first and then [1]. (g) Image
generated by [2], which is retrained with LR non-frontal and HR frontal
face images. (h) Our result.

of the latent representations between the input non-frontal
faces and their ground-truth frontal LR ones. With the help
of the proposed triplet loss, we are able to enforce that
the representation of a side-view face to be close to its corre-
sponding frontal LR face and far from other LR frontal faces
in the latent subspace. In this manner, the faces upsampled
from the encoded representations are not only similar to
their HR frontal counterparts but also distinguishable from
other hallucinated faces since the same upsampling sub-
network is used for super-resolution. In particular, the
upsampled frontalized faces can share similar facial charac-
teristics with their corresponding ground-truth ones after
super-resolution. Thus, our triplet loss preserves the identity
information implicitly. Note that, different from the tradi-
tional triplet loss, where both negative and positive exam-
ples are used to calculate the gradients of neural networks
and updated simultaneously, we only update the latent rep-
resentations of LR side-view faces by forcing them to be close
to the representations of their ground-truth frontal faces
without affecting positive and negative LR frontal faces. Fur-
thermore, we exploit a feature-wise similarity constraint,
known as perceptual loss [28], to make the hallucinated facial
characteristics similar to the ground-truths, thus improving
the visual quality.

Although deep neural networks have given rise to major
advances in many computer vision tasks, they require very
large datasets to train millions of parameters in their mod-
els. In our case, the existing large-scale face datasets [29],
[30] do not provide a sufficient number of frontal and non-
frontal face image pairs for training our TANN. To obtain a
large corpus of frontal and non-frontal face image pairs for
the goal of training our deep neural network, we construct a
set of out-of-plane rotated images from available frontal
faces mapped onto a 3D face model. We first map randomly
chosen frontal images to a 3D model, and then render differ-
ent views of the 3D face, similar to the work in [31]. This
allows us to have high-quality HR frontal faces as our
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ground-truth images. It is important to note that this step is
only to construct the training dataset, as we do not use any
3D models in our network (neither in training, nor in test-
ing). In our experiments, we use non-frontal faces whose 3D
models are unknown to demonstrate that TANN can hallu-
cinate and frontalize different views of any unaligned LR
face beyond the poses it is exposed to in training.

Overall, our contributions can be summarized as follows:

e We introduce a new transformative adversarial neu-
ral network to simultaneously hallucinate (by an
upscaling factor of 8x) and frontalize tiny (16 x 16
pixels) unaligned face images with pose variations
up to £75°.

e We propose a new triplet loss to encode non-frontal
LR faces into a latent subspace without distorting
the encoding of frontal LR ones. With the help of the
proposed triplet loss, we can force non-frontal LR
faces to be close to their ground-truth frontal ones
while keeping away from other faces in the latent
subspace. To the best of our knowledge, our method
is the first attempt to employ the triplet training
strategy in the face hallucination task.

e We perform the training of our network in an end-
to-end fashion by incorporating the reconstruction,
perceptual, discriminative and triplet loss terms. In
order to train our network, we also provide a dataset
of corresponding frontal and non-frontal view face
image pairs, which will be made available on-line to
the vision community at large.

e We achieve superior hallucination results and out-
performs the state-of-the-art by a large margin of
4.0 dB PSNR. Our method eliminates the need for
facial landmarks or 3D face models as it is agnostic
to the underlying in-plane and out-of-plane pose
variations and spatial deformations. In the testing
phase, our method can successfully process faces
that are imaged at views not seen during training.

This paper is an extension of our previous works [2], [22],

[26]. Unlike our previous works [2], [22], [26], which only
focus on super-resolving LR face images, this paper aims at
upsampling LR faces while frontalizing them. However,
our previous upsampling networks [2], [26] cannot upsam-
ple and frontalize profile faces even after retraining, as
shown in Fig. 1g. Therefore, we first project LR faces in dif-
ferent poses into latent representations by an encoder net-
work, and then upsample from the latent representations by
a decoder network. To the best of our knowledge, our
method is the first attempt to provide a unified framework
for super-resolution and frontalization of unaligned very
low-resolution face images, reducing significantly the arti-
facts introduced by either strategy, when considered
individually.

2 RELATED WORK

Our work mainly focuses on two aspects: face frontalization
and hallucination. We briefly review noteworthy face fron-
talization and hallucination works below.

Face Frontalization. Generating a frontal face from a
single non-frontal face image is very challenging due to
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self-occlusions and various pose variations, and has
received significant attention in computer vision. Seminal
works date back to the 3D Morphable Model 3DMM) [5],
where a face is represented by the shape and texture bases
in PCA subspace. After obtaining the the shape and texture
coefficients of an input face image, Blanz and Vetter [5]
render novel views of an input face. Driven by 3DMM,
Yang et al. [6] estimate 3D surface from face appearance
and then synthesize new expressions of the given face.
However, these methods require the input face images to be
nearly frontal in order to estimate the shape and appearance
coefficients of input faces in PCA subspace. Dovgard and
Basri [32] exploit the facial symmetry to estimate 3D geome-
try of the given faces and render frontal faces. Similarly,
Hassner et al. [1] use facial symmetry to render out-of-view
facial regions. Some methods, e.g., [7], [8], [31], [33], [34],
attempt to reconstruct frontal views by mapping a 2D face
image onto a 3D reference surface mesh after registering
and normalizing the face image. Since they need to detect
facial landmarks in the input images and establish corre-
spondences of landmark points to 3D or 2D reference mod-
els, they require images in sufficiently high resolutions.
Based on the fact that frontal faces have the minimum rank
of all different poses, Sagonas et al. [9] propose a statistical
face frontalization method, but the appearance of their fron-
talized faces may not be consistent with the input faces.
Deep learning based face frontalization methods have
been proposed recently as well [34], [35], [36], [37], [38],
[39], [40]. Zhu et al. [35] present a deep neural network to
frontalize HR faces by exploiting the symmetry and similar-
ity of facial components. Their method does not require esti-
mation of a 3D model, but it cannot maintain appearance
similarity between the frontalized and input faces either.
Yim et al. [36] develop a multi-task deep neural network to
rotate faces, but their method outputs blurry frontal faces
due to the aggressive downsampling operations in the
encoder. Similarly, Cole et al. [38] learn to generate facial
landmarks and textures from features extracted by a face
recognition network. Since Cole et al. warp input faces to
the mean face geometry by using facial landmarks, the reso-
lutions of their inputs need to be sufficiently large. Very
recently, Huang et al. [39] employ two deep neural net-
works, i.e., global and local networks, to frontalize faces.
However, their local network needs to extract HR facial
components for identity preservation and to align HR facial
components to pre-defined positions, and thus their method
is not suitable for very LR unaligned non-frontal face
images. Xi et al. [40] combine 3DMM and a generative
adversarial network to frontalize faces with arbitrary poses.
They also need to localize facial landmarks when mapping
the input faces to the 3DMM. Thus their method requires
sufficient resolutions for input images. Tran et al. [41] pres-
ent a convolutional neural network (CNN) to regress
3DMM shape and texture parameters to speed up the opti-
mization of 3DMM, but their method does not render fron-
talized faces which are similar to the input faces in terms of
image intensity. Instead of localizing facial landmarks
explicitly in the face images, Chang et al. [42] employ a sim-
ple CNN to regress 6 degrees of freedom (6DoF) 3D head
poses from image intensities. Then the estimated 6DoF
parameters can be used to align face images without
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localizing facial landmarks explicitly. By transforming input
image intensities with the estimated parameters, [42] is able
to preserve the appearance similarity between the input
faces and their counterparts in the generated views.

Face Hallucination. Face super-resolution (FSR), also
known as face hallucination, aims at magnifying an LR
image to its HR version and can be roughly grouped into
three categories: holistic-based, part-based, and deep net-
work based solutions.

Holistic-based methods attempt to super-resolve an
entire HR face by using global face models, often learned by
PCA. Wang and Tang [14] establish a linear mapping
between LR and HR face subspaces to super-resolve HR
faces, while Liu et al. [15] learn a global appearance model
for upsampling LR inputs and employ a local nonparamet-
ric model to enhance the facial details. Kolouri and
Rohde [20] propose to morph an HR output from the
aligned exemplar faces similar to LR inputs by the optimal
transport and subspace learning techniques. Because holis-
tic-based methods require LR inputs to be accurately
aligned and to share the same pose and expression as HR
references when learning global face models, they are very
sensitive to misalignments and pose variations.

Instead of super-resolving entire faces, part-based meth-
ods upsample facial regions and thus can address various
poses. They either use reference position patches, or employ
facial components to restore the HR counterparts of LR
inputs. For instance, Baker and Kanade [12] reconstruct
high-frequency details of aligned frontal face images by
finding the best mapping between LR and HR patches. Sim-
ilarly, Ma et al. [17] employ position patches extracted from
multiple aligned HR images to upsample aligned LR face
images. Rather than reconstructing patches in the image
domain, Yang et al. [18] and Li et al. [19] super-resolve HR
image patches by employing sparse coding techniques to
achieve better performance. Tappen and Liu [43] apply
SIFT flow [44] to align the facial parts of LR images and
reconstruct HR facial details by warping the reference HR
images, while Yang et al. [45], [46] localize facial compo-
nents in the LR images by a facial landmark detector and
then reconstruct details from the similar HR reference com-
ponents. Since these methods need to extract facial compo-
nents in LR face images accurately, their performance
degrades dramatically when the LR faces are tiny. We refer
the readers to the work [21] for a more comprehensive sur-
vey on face hallucination using traditional approaches.

As large-scale datasets become available, Zhou et al. [47]
propose a convolutional neural network to extract facial
features and recover facial details from the extracted fea-
tures. Yu and Porikli [23] consolidate deconvolutional and
convolutional layers for super-resolving LR face images,
but they improve the visual quality by a post-processing
technique, i.e., an unsharp filter. The work presented in [22]
develops a discriminative generative network to super-
resolve aligned LR face images in an end-to-end fashion
while Huang et al. [48] exploit wavelet coefficients learned
by CNN to restore HR faces. In order to relax the require-
ment of face alignment, Yu and Porikli [26] embed multiple
spatial transformer networks [3] into the generative net-
work of [22]. Their follow-up work [2] employs a decoder-

encoder-decoder structure to suEEer—resolve noisy LR faces
Xplore. Restrictions apply.
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Fig. 2. TANN consists of two parts: A transformative upsampling network (r

ed box) and a discriminative network (blue box). In our transformer sub-

network, we also employ skip connections between our encoding layers and decoding layers, indicated by the purple line. For simplicity, we only

draw the first skip connections.

while suppressing image noise. Xu et al. [27] employ the
generative adversarial framework [24] as well as a multi-
class adversarial loss to upsample blurry and LR face and
text images. Dahl et al. [49] exploit the framework of
PixelCNN [50], known as an autoregressive generative
model, to hallucinate very low-resolution face images.
Towards the same goal, Zhu et al. [51] use a cascade bi-
network to upsample very low-resolution and unaligned
faces, of which one is used to super-resolve low-frequency
components of face images and the other is employed to
hallucinate high-frequency facial details. Since these deep
learning based methods do not take out-of-plane rotations
of faces into account and are restricted to small pose varia-
tions, (i.e., within +30°), they may fail to super-resolve LR
faces with large pose variations.

Recently, some face hallucination methods have been
proposed to handle large pose variations in LR face images
by exploiting facial structure information [52], [53].
Chen et al. [52] first super-resolve low-frequency compo-
nents of input faces and then enhance the facial details
based on the facial landmarks estimated from the
upsampled faces. Bulat et al. [53] upsample face images in
different poses by imposing a loss to enforce the detected
landmarks in the super-resolved faces to be close to the
ground-truth ones. However, these methods only super-
resolve profile faces rather than frontalizing them for better

observation and analysis. Even though profile faces can be
super-resolved with authentic details, localizing facial land-
marks from those profile faces for frontalization is still
challenging.

Due to the above limitations, simply cascading face hal-
lucination and frontalization methods is not an acceptable
solution for our problem.

3 PRoPOSED METHOD: TANN

Our network has two components: (i) a transformative
upsampling network, which transforms different poses to
the frontal one and also super-resolves the frontalized LR
feature maps; and (ii) a discriminative network, which
forces the generated HR frontal faces to lie on the manifold
of authentic HR face images. Fig. 2 illustrates the overall
architecture of TANN.

In the training phase, the entire network is trained in an
end-to-end fashion to compensate for possible artifacts
induced by any of the frontalization and hallucination tasks.
As shown in Fig. 3k, when we train the upsampling net-
work separately, i.e., generating frontalized LR faces as
intermediate results, the transformer subnetwork may suf-
fer from the loss of information contained in its feature
maps because it is enforced to output 3 channel LR faces as
its objective function rather than 32 channel feature maps.

Authorized licensed use limited to: University of Queensland. Downloaded on December 31,2025 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.
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Fig. 3. Artifacts caused by the state-of-the-art face frontalization and hal-
lucination methods. (a) The input 16x16 LR image. (b) The original
128x128 HR frontal image. (c) The aligned upright version of (a) by
STNy. (d) Frontalized result of (c) using [1]. Note that, we first upsample
(c) by bicubic interpolation, then apply [1], and downsample the frontal-
ized result. (e) HR image after applying [51] to (d). (f) HR image after
applying [51] to (c) directly. (g) The frontalized version of (f) by [1]. (h)
The result of applying [2] to (a). (i) The result of TANN without the trans-
former subnetwork, which is similar to the upsampling network [2],
retrained with LR non-frontal and HR frontal faces. (j) The aligned and
frontalized LR face by our transformer subnetwork. Note that, in our
end-to-end trained TANN, the output of the transformer network is a set
of feature maps not an image. (k) The hallucinated result of (j) by our
upsampling subnetwork (here, we retrained the upsampling network). (1)
Our final result.

This may lead to accumulated errors and obvious devia-
tions in the output of the upsampling subnetwork due to
the incorrect input images for upsampling. Thus, feeding 32
feature maps directly to the upsampling network is a better
choice.

3.1 Transformative Upsampling Network (TUN)

In Fig. 2, our transformative upsampling network is shown
(red box). TUN is composed of two parts: a transformer sub-
network and an upsampling subnetwork. The transformer
part (purple box) aims at encoding non-frontal LR faces into
latent representations which are close to the latent represen-
tations of their corresponding frontal LR ones. By doing so,
we can achieve the latent codes of frontalized LR faces. Our
transformer subnetwork is constructed by convolutional
layers, a fully-connected layer, deconvolutional layers and
spatial transformer layers. Since the input LR faces undergo
in-plane rotations, translations and scale changes, multiple
spatial transformer networks (STN) [3] are embedded as
intermediate layers to compensate for such affine transfor-
mations. Moreover, because STNs learn 2D affine warps
rather than out-of-plane rotations, they cannot recover self-
occluded parts of faces. To solve this problem, our intuition
is that we can project different views of a face into a sub-
space, where their encoded representations are enforced to
lie close to the representations of their corresponding frontal
one. Therefore, we incorporate a fully-connected layer to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 9, SEPTEMBER 2020

encode the feature maps of LR profile faces as well as design
a triplet loss to force the similarity between the representa-
tions of LR profile and frontal ones.

To illustrate the effectiveness of the transformer subnet-
work, we change the channel number of its output layer to
3, and use LR frontal faces as ground-truth images to train
this subnetwork. As shown in Figs. 3j and 4d, it can success-
fully generate an LR frontal face image. Note that, when
training our TANN, we do not employ LR frontal faces as
supervision to prevent the aforementioned drift issue.

After obtaining the feature maps of LR frontal faces gen-
erated by the transformer subnetwork, we apply an upsam-
pling subnetwork (green box in Fig. 2) to hallucinate the
high-frequency facial details of frontal faces. Because the
resolution of LR input images is very low, STNs in our
transformer subnetwork may not align LR faces accurately.
The LR feature maps generated by the transformer network
may still contain misalignments. We employ the upsam-
pling structure used in our previous works [2], [26] for fur-
ther alignment and super-resolution.

As shown in Fig. 3h, simply applying the method of [2] to
LR profile faces cannot provide high-quality HR frontal face
images. This manifests that upsampling LR non-frontal
faces with large pose variations is more difficult compared
to LR frontal faces and also indicates the necessity of our
transformer subnetwork. Since the mapping between com-
mon LR patterns and HR facial details can be easily learned
from frontal faces, we frontalize LR inputs first and then
hallucinate them.

3.2 Discriminative Network

As demonstrated in our previous works [2], [22], [26], only
using euclidean distance (pixel-wise ¢ loss) between the
upsampled faces and the ground-truth HR faces tends to
generate over-smoothed results. Therefore, a class-specific
discriminative objective is also incorporated into our TUN,
aiming to force the hallucinated HR face images to lie on the
same manifold of real frontal face images.

As shown in Fig. 2 (blue box), the discriminative network
consists of convolutional layers, max-pooling layers, drop-
out layers, and fully-connected layers. It is designed to
determine whether an image is sampled from real face
images or the hallucinated ones. The discriminative loss,
also known as adversarial loss, will be back-propagated to
update the parameters of TUN as well. With the help of the
adversarial loss, we can generate more realistic HR frontal
faces. Fig. 4 illustrates the impact of the adversarial loss on
the final results.

3.3 Training Details of TANN

We construct LR profile and HR frontal ground-truth face
image pairs {l;, h;} for our training purpose, where h; repre-
sents the aligned frontal HR face images (only eyes are
aligned), and /; is the synthesized LR side-view face images
from h;. For each HR frontal face h;, we generate five differ-
ent views, i.e., {0°,£40° +75°}, to construct LR/HR train-
ing pairs. Using these five distinct poses is a trade-off
between a sufficient coverage of pose variations and the rea-
sonable size of the training dataset and also suggested in
[31]. More details are provided in Section 4.
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Fig. 4. lllustrations of influence of different losses. (a) The input 16x16 LR images. (b) The original 128x128 HR frontal images. (c) The down-
sampled version of (b). (d) The frontalized LR faces by our transformer subnetwork. (e) The upsampling results only using pixel-wise loss. (f) The
upsampling results using the pixel-wise and perceptual losses. (g) The upsampling results without using the triplet loss. (h) Our final results.

In training our TANN, we not only enforce the conven-
tional pixel-wise intensity similarity, known as pixel-wise ¢,
loss, but also the feature-wise similarity, known as percep-
tual loss [28], to obtain high-quality results. Similar to the
works [22], [26], the adversarial loss is also employed to
attain visually appealing frontalized HR face images. As
mentioned in Section 3.1, we also develop a triplet loss to
force the representations of LR profile faces to be similar to
the representations of their frontal faces. In this manner,
we can frontalize LR profile faces without degrading super-
resolution of frontal ones.

Pixel-Wise Intensity Similarity Loss. We constrain the gen-
erated HR frontalized face h; to be similar to its ground-
truth frontal counterpart h; in terms of image intensities.
Thus we employ a pixel-wise ¢, regression loss L, to
impose the appearance similarity constraint, expressed as

r 2
Lyia = E(’Znhi)Np(}ih)Hhi = hillp , (1)
=B, n)pm 1 7e(l) = hill e,

where ¢t and 7 are the parameters and the output of TUN,
p(h, h) represents the joint distribution of the frontalized
HR faces and their corresponding frontal HR ground-truths,
and p(l, h) indicates the joint distribution of the LR and HR
face images in the training dataset.

Feature-Wise Similarity Loss. As mention in [22], pixel-
wise /5 loss leads to over-smoothed super-resolved results.
Here, we employ a feature-wise similarity loss, known as
perceptual loss [28], to constrain the super-resolved HR
faces to share the same facial details as their ground-truth
counterparts, thus attaining high-quality results with rich
facial details. The perceptual loss L., measures euclidean
distance between the feature maps of HR frontalized and
ground-truth faces extracted by a deep neural network,
written as

Efcut = E(;;i,hi)wp();h)||q)(ﬁi) - (I)(hl)Hi“
= B ) mptin) [ P(Te(1:)) — D(ha) |17,

where ®(-) denotes feature maps extracted by the ReLU32
layer in VGG-19 [54], which gives good empirical perfor-
mance in our experiments.

Adversarial Loss. In order to achieve visually appealing
results, we infuse class-specific discriminative information
into TUN by exploiting a discriminative network, similar to

(2)

our previous works [2], [22], [26]. Our goal is to make the
discriminative network fail to distinguish generated faces
from real ones. In this manner, we enforce the super-
resolved HR frontal faces to lie on the manifold of real fron-
tal HR face images. Therefore, the discriminative network is
used to categorize real HR frontal faces and generated ones,
and thus its objective function is expressed as

Lo =B pmin [long(hi) +1log (1 — Dy(hy))
= _Ehl~p(h)10g Dd(hl) — EﬁZNp(ﬁ)lOg (1 — 'Dd(ﬁl)) (3)
= 7Ehi~zl(}b)10g 'Dd(hz) — Eliwp(l)log (1 - 'Dd(T(ll))),

where d represents the parameters of the discriminative net-
work, p(l), p(h) and p(h) indicate the distributions of the
LR, HR ground-truth frontal and the generated faces respec-
tively, and Dy(h;) and Dy(h;) are the outputs of the discrimi-
native network. To make the discriminative network
distinguish hallucinated faces from real ones, we minimize
the loss £p(d) and update the parameters d.

Meanwhile, our TUN aims to fool the discriminative net-
work. Therefore, the adversarial loss for our TUN is

Ly =-E; g (D(h))

4)
= —Ey,nlog (D(T (1))

Here, we minimize the loss £7(¢) to update the parameters
t. These two adversarial losses in Eqns. (3) and (4) are
employed to update our TUN and discriminative network
respectively in an alternating fashion.

Triplet Loss. In order to frontalize side-view LR faces, we
present a triplet loss to constrain the encoded LR faces to be
close to the latent representations of their corresponding
frontal ones and far away from other frontal faces in the
latent subspace. Therefore, our proposed triplet loss is
expressed as

17 )= F =17 ) -F )]
@I

Ly = E(I:ﬁl;,l,)wp(s) 7 ©

where F(-) indicates the encoded latent representation by
the fully-connected layer in our transformer subnetwork,
(I+,17,1;) represents a triplet sample from the set of all possi-
ble triplets S in the training set. /; is an LR profile face, [,
dubbed positive anchor, is the corresponding frontal LR

face of l;, and [, dubbed negative anchor, is any other

7
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frontal LR face. One example of the triplets is shown in
Fig. 2. In addition, [z], denotes the operator max{z, 0}.

Since our network aims at super-resolving LR faces rather
than clustering faces, it should not distort the mapping
between LR and HR frontal faces. Considering that positive
and negative anchors are LR frontal faces, updating the gra-
dients with respect to the representations of the positive and
negative anchors will distort the mapping between LR and
HR frontal faces. In other words, clustering triplets by adjust-
ing the latent representations of positive and negative
anchors would damage the end-to-end mapping between
LR and HR frontal faces and thus leads to inferior super-
resolution performance. Different from the triplet loss pre-
sented in [55], we take positive and negative anchors as
constant and thus only back-propagate gradients with
respect to the latent representations of LR side-view faces. In
this manner, we are able to upsample frontal faces without
introducing distortions while forcing the LR profile faces to
be close to their frontal counterparts in the latent space.

In our TANN, all the layers are differentiable and
RMSprop [56] is used to update the parameters ¢ and d. We
update the parameters d by minimizing the adversarial loss
Lp as follows:

; p oL
i+1 i _ D\2
AT =y A+ (= y) ()

Ly 1 ©)
"d AT ¢
where r and y represent the learning rate and the decay rate
respectively, ¢ indicates the index of the iterations, A is an
auxiliary variable, and ¢ is set to 1078 to avoid division by
zero. We employ multiple losses, i.e., Ly, Lfear, L7 and Ly,
to update our TUN and the object function is expressed as

dH—l — di _

[:TUN = Acpu + n‘cfeat + )“CT + /’L‘Ct7'i7 ()

where 1, A and u are the trade-off weights. Since we aim at
super-resolving frontal HR faces rather than generating ran-
dom faces, we put lower weights on the feature-wise, adver-
sarial and triplet losses and set A, n and u to 10e 2, 10e~?
and 10e~* respectively. Then, the parameters of TUN ¢ are
updated by the gradient descent as follows:

AT =y A+ (1= ) ()
LN 1 (®

ot /Ai+1 +E‘

As the iteration progresses, the output faces will be more
similar to real faces. Therefore, we gradually reduce the
impact of the discriminative network by decreasing A

fF g

N = max{\-0.9957, \/2}, 9)

where j is the index of the epochs. Eqn. (9) not only
increases the impact of the appearance similarity term but
also preserves the class-specific discriminative information
in the training phase.

3.4 Hallucinating Frontal HR from Non-Frontal LR

The discriminative network is only employed in the training
phase. In the testing phase, we feed an unaligned LR profile
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face image into the transformative upsampling network to
obtain its upright and frontal HR version. Note that, only in
the training stage, we need to feed the network with triplet
samples due to employing the triplet loss. In the testing
stage, our network is able to super-resolve and frontalize a
single image. Since aligned HR frontal face images are
employed as ground-truths, TUN will output aligned and
frontalized HR faces directly. As a result, our method does
not need to estimate the face orientations or align very low-
resolution images beforehand, and provides an end-to-end
and highly nonlinear mapping from an unaligned LR pro-
file face image to its frontal HR version.

3.5 Implementation Details

The STN layers, as shown in Fig. 2, are built by convolu-
tional and ReLU layers (Conv+ReLU), max-pooling layers
with a stride 2 (MP2) and fully connected layers (FC). Since
STN is mainly used for calibrating in-plane transformations,
we employ the similarity transformation for alignment.
Specifically, STN; and STN, share the same architecture
and consist of Conv+ReLU (filter size: 20 x 128 x 3 x 3 with
1 pixel padding), MP2, Conv+ReLU (20 x 20 x 3 x 3),
FC+ReLU (from 400 to 20 dimensions), and FC (from 20 to
4 dimensions). STN3 is composed of MP2, Conv+ReLU
(20 x 256 x 5 x 5), MP2, Conv+ReLU (20 x 20 x5 x 5),
FC+ReLU (from 80 to 20 dimensions) and FC (from 20 to
4 dimensions). STNy is composed of MP2, Conv+ReLU
(128 x 64 x 5 x 5), MP2, Conv+ReLU (20 x 128 x 5 x 5),
MP2, Conv+ReLU (20 x 20 x 3 x 3), FC+ReLU (from 120
to 20 dimensions) and FC (from 20 to 4 dimensions).

Similar to the works [24], [57], batch normalization [58] is
employed after each convolution except the final output
layer of TUN and dropout is applied to the feature maps in
the discriminative network. In the experimental part, some
algorithms may require alignment of LR inputs, i.e. [17].
Hence, we employ another network STNj to align the LR
face images to the upright position, and STNj, consists of
Conv+ReLU (128 x 3 x 3 x 3 with 1 pixel padding), MP2,
Conv+ReLU (20 x 20 x 3 x 3), MP2, FC+ReLU (from 180 to
20 dimensions), and FC (from 20 to 4 dimensions).

We also use a triplet pair {({,1;,1;), (hi, hi, h; )} as a unit
to construct our mini-batch in training, where h; is the HR
frontal face image corresponding to the LR profile face [;
and the LR frontal face [, and h; is the HR frontal version
of the LR frontal face I;. The triplet pairs are not only
designed to calculate the triplet loss but also compatible
with the other losses. Therefore, our network can be trained
in an end-to-end fashion.

The learning rate r is set to 0.001 and multiplied by 0.99
after each epoch, 7 is set to 0.01, and the decay rate is set to
0.01. The training codes and details can be downloaded
from https:/ /github.com/XinYuANU/JFFH.

4 SYNTHESIZED DATASET

Training of a deep neural network requires a large number
of samples to prevent models from overfitting to the train-
ing dataset. However, the publicly available large-scale face
datasets [29], [30] only provide faces in the wild but not
frontal/non-frontal pairs. For the training purpose, we opt
to generate a large set of synthesized LR non-frontal faces
from HR frontal face images.
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Fig. 5. lllustration of the synthesized dataset. (a) Original frontal HR face
image. (b) The generated views of (a). (c) Spatially transformed and
downsampled version of (b).

There are a number of alternative approaches available.
For instance, Hassner et al. [1] render 2D frontal faces from
different side-view faces using a single 3D reference mesh.
However, when the out-of-view face regions are large, these
methods are prone to artifacts. Similarly, landmark detec-
tion algorithms may fail to localize facial landmarks accu-
rately in large poses.

We adopt the idea of [31] to generate different views
from HR frontal ones. We use a single 3D face model to ren-
der HR out-of-plane rotated faces while taking advantage of
the mirror-symmetry for the positive and negative angles to
produce five different views of faces, i.e., {0°,£40°, £75°}.
Specifically, we first randomly select 10K cropped frontal
faces (within 45°) from the CelebA [30], and resize them to
128 x 128 pixels. We use these images as our HR ground-
truth faces h;. Then we generate the non-frontal LR faces [;
by transforming and downsampling the reconstructed HR
images down to 16 x 16 pixels. Here, we employ the bicubic
interpolation method ( imresize function in Matlab) to gener-
ate LR face images. Therefore, we obtain 50K LR/HR face
pairs for training and testing of our network. Fig. 5 illus-
trates sample pairs {l;, h;} generated from a single frontal
face.

Since our side-view face images are generated from fron-
tal faces by a generic 3D face model, some distorted areas or
artifacts may appear in the synthesized side-view faces,
such as ear and hair regions as visible in Fig. 5. When we
downsample the generated profile faces, those artifacts can
be largely reduced. Furthermore, those regions may not be
visible in the final frontalized and upsampled HR face
images, and thus deep neural networks might learn to
ignore those artifacts. However, if localizations of facial
landmarks are erroneous, the generated views may undergo
obvious distortions. For instance, when noses or chins suffer
severe misalignments to the 3D model, the synthesized pro-
file faces can be severely distorted or even blended with
backgrounds. Those artifacts cannot be alleviated in LR
faces, thus bringing extra ambiguity to the super-resolution
and frontalization process. Therefore, we manually choose
frontal faces where landmarks are well localized on the
facial components to avoid generating side-view faces in
sub-quality.

5 EXPERIMENTAL EVALUATION

We compare our method with ten state-of-the-art methods
qualitatively and quantitatively. As mentioned in Section 4,
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we assemble 50K LR/HR face pairs, and randomly choose
9K frontal face images for training (45K LR/HR pairs), and
1K faces for testing (5K LR/HR pairs). In training TANN,
we randomly choose a side-view LR face, its corresponding
frontal LR face and any other frontal LR face to construct an
input triplet (I, 1;,17) as well as employ their correspond-
ing HR ground-truth triplet (h;, h;, h;) as supervision. In all
cases, the training data and test data do not overlap. We use
different ground-truth HR frontal faces in the training and

testing phases.

5.1 Qualitative Comparisons with the SoA

Since Ma et al.’s method [17] requires the input LR faces to
be aligned uprightly, we train STNj to align the LR inputs
to the upright position for a fair comparison. Note that, our
method does not need any alignment or pose estimation in
advance.

As illustrated in Figs. 6¢c and 7c, different combinations of
bicubic interpolation and the frontalization method [1] can-
not produce authentic frontal face details. Because of the
low resolution of inputs, Hassner et al.s method [1] fails to
detect facial landmarks and outputs erroneous frontalized
faces while bicubic interpolation is handicapped to generate
necessary high-frequency facial details.

Kim et al. [59] propose a very deep CNN based general
purpose super-resolution (SR) method, known as VDSR.
Since VDSR is trained on natural image patches and does
not provide an upscaling factor of 8x, we retrain VDSR
with face patches extracted from CelebA dataset by an
upscaling factor of 8x. As shown in Figs. 6d and 7d, VDSR
fails to produce facial details and thus contaminates the out-
puts of [1] with ghosting artifacts.

Leigh et al. [60] present a generic super-resolution
method, dubbed SRGAN. SRGAN employs the framework
of generative adversarial networks [24], [57] to enhance the
visual quality and is trained by using not only a pixel-wise
45 loss but also an adversarial loss. SRGAN provides an
upscaling factor of 8x, but it is only trained on general
patches. Thus, we retrain SRGAN on face images as well.
As shown in Figs. 6e and 7e, the generated facial details by
SRGAN are still blurry, and [1] fails to localize the land-
marks accurately in the upsampled faces. Thus, the final
results suffer from severe artifacts.

Ma et al. [17] super-resolve LR inputs by exploiting posi-
tion patches, and require the LR inputs to be precisely
aligned with the exemplar training dataset. Here, aligned
HR face images from CelebA dataset are employed as the
exemplar dataset. It spawns severe artifacts in the
upsampled faces because of large pose variations that exist
in the input LR images as visible in Fig. 7f. Due to the faulty
frontalization by [1], this method also produces distorted
facial details, as shown in Fig. 6f.

Zhu et al. [51] present a deep cascaded bi-network for
face hallucination, called CBN, which first localizes facial
landmarks and then aligns LR faces based on the localized
landmarks. However, when the inputs undergo large pose
variations, CBN cannot localize facial landmarks accurately,
and thus causes severe artifacts as seen in Fig. 7g. Fig. 6g
shows that CBN cannot hallucinate authentic HR faces from
the incorrect frontalized LR faces either. Furthermore, CBN
super-resolves high-frequency facial details by combing
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Fig. 6. Results of the state-of-the-art methods for frontalization followed by hallucination. The input faces are first frontalized by [1] and then halluci-
nated by different algorithms. Rows: +75°, +40°, 0°, —40°, and —75°. Columns: (a) Unaligned non-frontal LR inputs. (b) Original frontal HR images.
(c) [1] + bicubic interpolation. (d) [1] + [59]. (e) [1] + [60]. (f) [1] + [17]. (9) [1] + [51]. (h) [1] + [2]. (i) Our method. Notice that, TANN does not need
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facial deformation bases. The bases are pre-defined and
shared by all samples in CBN. When CBN fails to localize
facial components accurately, it tends to output a mean face
template composed by the bases as the high-frequency com-
ponents of the upsampled faces. Therefore, the results seem
very close to each other, as visible in Figs. 6g and 7g.
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Yu and Porikli [2] propose a transformative discrimina-
tive autoencoder (TDAE) as an extension to [22] to upsam-
ple unaligned and noisy LR face images. TDAE interweaves
deconvolutional and STN layers to align and super-resolve
LR faces while employing a discriminative network that
forces the generative network to produce sharper results.

()

Fig. 7. Results of the state-of-the-art methods for hallucination followed by frontalization by [1]. Columns: (a) Unaligned non-frontal LR inputs. (b)
Original frontal HR images. (c) Bicubic interpolation + [1]. (d) [59] + [1]. (e) [60] + [1]. (f) [17] + [1]. (g) [51] + [1]. (h) [2] + [1]. (i) Our method.
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TABLE 1
Quantitative Evaluations on the Entire Test Dataset

F[1]+H H+F [1]

H Method

PSNR SSIM PE PSNR SSIM PE
Bicubic 20.99 0.80 236 2041 0.79 248
VDSR [59] 21.04 0.80 227 2047  0.79 2.39
SRGAN [60] 2094 0.80 222 20.34 0.79 2.37
Maetal. [17] 21.60 0.82 1.87 21.15 0.80 2.11
CBN [51] 20.61 0.79 2.33 1940 0.77 2.76
TDAE [2] 20.68 0.79 2.28 19.89 0.77 2.52
Ours 25.69 0.87 1.10 25.69 0.87 1.10

However, TDAE can only hallucinate unaligned frontal
faces rather than profile faces as demonstrated in Fig. 7h
since it does not take out-of-plane rotations into account
and the first decoder and encoder in TDAE are used for
noise reduction rather than frontalization. Fig. 6h shows
that TDAE cannot produce realistic HR faces due to the
deteriorated LR facial patterns caused by the incorrect
frontalization.

Our method reconstructs authentic facial details as
shown in Figs. 6i and 7i and Figs. 8i and 9i. In the experi-
ments, the face poses vary from —75° to +75°. Since our
transformer subnetwork can frontalize and align LR input
faces more accurately, our upsampling subnetwork
achieves superior reconstruction performance from the
frontalized and aligned LR features.

5.2 Quantitative Comparisons to the SoA
We measure the reconstruction performance of all methods
on the entire test dataset by the average PSNR and the struc-
tural similarity (SSIM) scores. Note that, when we halluci-
nate non-frontal faces, the hair and background regions
may not be symmetric or the same compared to the original
HR face images. Thus, for a fair comparison for all methods,
we compute the PSNR and SSIM on the face regions.

We report results for two possible scenarios. In the first
case, we first apply [1] to frontalize LR face images,
and then super-resolve the frontalized LR images by the
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the second case, we super-resolve LR face images first by
the state-of-the-art SR/FSR methods and then frontalize the
upsampled results by [1] (denoted as H+F). We apply STN
to align LR inputs uprightly in both cases. Table 1 shows
that our method achieves the superior performance in com-
parison to the other methods, and outperforms the second
best method over 4.0 dB in PSNR.

Table 2 indicates the PSNR and SSIM scores for different
out-of-plane rotation degrees in the F+H and the H+F cases.
In Table 2, the first and second numbers denote PSNR and
SSIM scores respectively. As indicated in Table 2, first fron-
talizing and then upsampling faces can achieve slightly bet-
ter results than first upsampling followed by frontalization.
This also implies that it is easier to super-resolve frontal LR
facial patterns than non-frontal ones. Because of the mirror
symmetry operation in [1], the PSNR and SSIM scores of the
other methods in the positive degrees are lower than those
in the negative degrees, as seen in Table 2. However, our
method does not have this effect and produces consistent
PSNR scores in both negative and positive degrees. Further-
more, as the rotation degree increases, our method does not
degrade like the other methods. From 0° to £75°, our perfor-
mance only decreases 1.95 dB while the performance of the
second best method decreases 3.75 dB.

In addition, as reported in our previous work [26], we
also observe that blurry upsampled results may have higher
PSNRs. Therefore, we introduce a perceptual error metric to
measure the hallucination performance and the perceptual
errors are more consistent with human perception. In par-
ticular, the perceptual errors are measured by the differen-
ces of feature maps between the hallucinated faces and their
ground-truth ones, as indicated in Eqn. (2). As demon-
strated in Tables 1, 2 and 3, our method achieves the lowest
perceptual errors in comparison to other stat-of-the-art
methods. This also implies that our method can attain more
authentic frontalized upsampled HR face images.

We also conduct a user study. In the experiment, a cohort
of twenty students are asked to rank the upsampled faces
with respect to the ground-truth images. Since there are two
strategies to obtain HR frontalized face images, we conduct

state-of-the-art SR/FSR methods (denoted as F+H). In the user study on these two scenarios separately.
TABLE 2
Quantitative Evaluations on Different Out-of-Plane Rotation Degrees

H Methods —T75° —40° 0° +40° +75°
Bicubic 20.63/0.80 /235 21.43/081 /232 2452/083/207 1951/0.78/252 18.87/0.77/2.54
VDSR [59] 20.69 /0.80 /223 21.47/0.81 /223 2459/084/190 19.54/0.78/249 18.90/0.77/2.50

F[1]+H SRGAN [60] 20.58 /0.80 /221 21.34/0.80/221 2453/083/176 19.41/0.78 /246 18.81/0.77/2.46
Maetal. [17] 21.15/0.81 /1.88 22.05/0.82/1.83 2490/085/152 20.38/0.80/2.04 19.53/0.80/2.06
CBN [51] 20.34/0.79 /227 21.14/0.80/223 24.14/083/187 19.08/0.77 /259 1836 /0.76/2.68
TDAE [2] 20.44/0.79 /226 20.69/0.79 /230 23.13/082/180 19.74/0.78 /250 19.43/0.78/2.52
Bicubic 20.25/0.79 /248 20.68/0.80 /247 23.46/0.83/217 19.05/0.77 /263 18.62/0.77 / 2.62
VDSR [59] 20.41/0.80 /238 20.83/0.80/239 2343/0.83/198 19.04/0.77/2.64 18.66/0.77/2.59

H+F[1] SRGANI60] 2036/0.79 /234 20.69/079/240 2312/082/1.92 1898/077/261 1853/0.77/255
Maetal. [17] 2123 /0.80/212 2190/0.81 /211 2337/083/185 19.97/079/223 19.26/0.78/2.24
CBN [51] 18.64 /0.75 /283 1923 /076 /284 22.13/0.81 /218 1884/0.76/293 18.16/0.75/2.99
TDAE [2] 1935 /077 /259 1997 /077 /256 22.62/0.80/218 19.36/0.77 /258 18.13/0.76 / 2.69
Ours ~ 2486 /0.87 /121 2524/0.87/118 2658/0.88/1.08 2522/087/117 24.78/0.87/1.21
Ours 25.02/0.87/1.17 25.72/0.87/1.10 26.97/0.89/0.98 25.70/0.87/1.10 25.03/0.87/1.17
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TABLE 3
Quantitative Evaluations on the Frontal View
Method Bicubic VDSR [59] SRGAN [60] Ma et al. [17] CBN [51] TDAE [2] Ours
PSNR 25.64 25.78 25.58 26.45 25.37 26.39 26.97
SSIM 0.86 0.86 0.85 0.88 0.86 0.87 0.89
PE 1.84 1.51 1.17 1.16 1.44 1.18 0.98

Specifically, in the first scenario all the face images are
recovered by applying frontalization first and then halluci-
nation, and in the second scenario all the images are recon-
structed by employing hallucination first and then
frontalization. In each scenario, we show twenty female
faces as well as twenty male ones recovered by different
methods to each user. Each user gives a score from 1 to 7 to
different results. We average the scores for all the users. The
average scores are illustrated in Fig. 15. As seen in Figs. 15a
and 15b, all the users favor our method on the test images.

6 DISCUSSIONS

6.1 Super-Resolving Different Levels of
Downsampled Images

In order to super-resolve different levels of downsampled
images, i.e., 2%, 4x and 8%, we need to modify our network
slightly to accept images in larger resolutions. Due to the
fixed size of the bottleneck layers of our network, merely
increasing the number of layers of the encoder network
does not necessarily improve the performance as the resolu-
tions increase. Since increasing the size of the bottleneck of
the network will increase the parameters of the network
dramatically, and the network cannot be fed into GPU
memory. Therefore, we employ skip connections between
our encoder and decoder parts. Note that, we concatenate
the feature maps of our encoder layers and their corre-
sponding decoder layers rather than adding them. In this
way, we can preserve more high-frequency details from
inputs. The visual results for different resolutions are also
shown in Fig. 10.

6.2 Comparisons with SoA on Face Recognition
and Retrieval

It is important to notice that we do not claim our method is
designed for face recognition for two reasons: (i) we do not
explicitly incorporate an identification objective in our for-
mulation, and (ii) it might seem fruitless to attempt recog-
nizing people in such tiny images even for humans.
However, we demonstrate that our hallucination method
effectively facilitates the face recognition task in two differ-
ence scenarios: (1) we first use the hallucinated faces to train
a face recognition network and then test its face recognition
performance; (2) We use an off-the-shelf face recognition

TABLE 4
Results of Different Face Recognition Networks
Trained on Different Source Images

Sources HR LR 8x 4x 2%

Accuracy  85.32%  62.15% 81.53% 83.33%  84.51%

network which is trained on original HR face images, and
then test its performance on our hallucinated face images.
For the first scenario, we use the standard faceNet [55] as
the face recognition network and the same training proto-
cols as indicated in [55]. We follow the standard divisions of
the training and test datasets in the LFW benchmark to gen-
erate LR/HR pairs, as reported in [29]. The face recognition
network is both trained and tested on the hallucinated faces
by our network. Following the standard LFW face verifica-
tion test protocol, we report the accuracy scores in Table 4.
We also included another two baseline methods for more
detailed comparisons. The first baseline network is trained
and tested on the original HR faces, marked as HR, and the
second baseline network is trained and tested on LR face
images that are upsampled by bicubic interpolation to fit
the resolution requirement of the network, marked as LR.
As indicated in Table 4, our method improves the face
recognition performance by a large margin of 19.38 percent
compared to the network that is only trained on LR face
images. However, as seen in Table 4, the gap of the face rec-
ognition performance between the LR and the original HR
faces is reduced by our method. We also test face recogni-
tion performance on different levels of downsampling, i.e.,
2x,4x and 8x. As indicated in Table 4, as the input resolu-
tions increase, the face recognition performance improves.
For the second scenario, we employ a state-of-the-art pre-
trained face recognition network (SphereFaceNet [61]) to
conduct standard face recognition tests on original HR
faces, aggressive downsampled LR faces and hallucinated
HR faces from LR ones by different methods. The face rec-
ognition performance is also evaluated on standard LFW
face verification benchmark [29]. We demonstrate the face
recognition performance in Table 5, where the performance
on original HR faces is marked as HR, the performance on

TABLE 5
Face Recognition Results for Different Methods
Accuracy
H Method
F[1]+H H+F [1]

Bicubic 66.57% 65.43%
VDSR [59] 64.15% 69.77%
SRGAN [60] 68.88% 70.92%
Ma et al. [17] 65.55% 68.83%
CBN [51] 65.05% 64.72%
TDAE [2] 64.02% 65.96%
HR 96.02%

LR 77.27%

Ours 8x 82.32%

Ours 4x 86.18%

Ours 2% 92.25%
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Fig. 8. Results of the state-of-the-art methods for frontalization followed by hallucination. Columns: (a) Unaligned non-frontal LR inputs. (b) Original
frontal HR images. (c) [1] + bicubic interpolation. (d) [1] + [59]. (e) [1] + [60]. (f) [1]+ [17]. (@) [1] + [51]. (h) [1] + [2]. (i) Our method.
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Fig. 9. Results of the state-of-the-art methods for hallucination followed by frontalization by [1]. Columns: (a) Unaligned non-frontal LR inputs. (b)

Original frontal HR images. (c) Bicubic interpolation + [1]. (d) [59] + [1]. (e) [60] + [1]. (f) [17] + [1]. (g) [51] + [1]. (h) [2] + [1]. (i) Our method.
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Fig. 10. lllustrations of super-resolving and frontalizing face images in different resolutions by our method. First row: Ground-truth frontal HR face
images. Second row: Input LR faces (left) and our results with a magnification factor 8 (right). Third row: Input LR faces and our results with a mag-
nification factor 4 x. Fourth row: input LR faces and our results with a magnification factor 2x.

LR faces is marked as LR, and the combinations of the fron-
talization method and different upsampling methods are
also listed. As shown in Table 5, our method improves the
face recognition performance significantly compared to the
other methods in both scenarios. Note that, since our
cropped original HR faces might not be aligned to the posi-
tions of HR faces used for training the network of [61], the
face recognition rate for original HR faces decreases slightly.
Furthermore, we also demonstrate that when the resolu-
tions of input images increase, the face recognition perfor-
mance of our method improves as seen in Table 5.
Furthermore, to our advantage, our method achieves sig-
nificant improvement in face retrieval performance as
shown in Table 6. We use an off-the-shelf deep face recogni-
tion model [62] to evaluate the performance of all the meth-
ods. First, we randomly choose 100 frontal faces from the
test data as our gallery. We generate their corresponding
four LR non-frontal images, and employ six algorithms
listed above to hallucinate the frontal HR faces on both F+H
and H+F scenarios. Following the standard protocol in [62],
we compute the accuracy score based on whether the cor-
rect person is included within the top-5 candidates (thus,
the probability of random selection is 5 percent). Here, we
notice that directly using off-the-shelf face recognition is
inappropriate to measure the similarity between generated

TABLE 6

Face Retrieval Results for Different Methods

H Method Accuracy
etho Fl+H H+F[1]

Bicubic 5.8% 6.6%
VDSR [59] 7.0% 8.0%
SRGAN [60] 6.0% 9.0%
Ma et al. [17] 6.0% 9.0%
CBN [51] 6.2% 8.2%
TDAE [2] 7.2% 5.6%
Ours 86.7%

HR faces and real HR faces because there is still a domain
gap between them. For instance, the features of real faces
may be different from those of generated HR faces. In order
to mitigate the domain gap, we train an autoencoder by
using the same protocol of training TANN to transfer HR
real faces to the domain where generated HR images lie in.
In this way, we can significantly reduce the domain gap.

As seen in Table 6, we improve the face retrieval accu-
racy with a large margin of 77.7 percent. This also implies
that our method is able to preserve the appearance similar-
ity rather than generating averaged HR faces when frontal-
izing and hallucinating LR faces.

6.3 Comparisons with SoA on Frontal Faces

Because we do not distinguish the views of LR faces deliber-
ately before frontalization, the frontalization method [1] is
applied to all the views of LR faces. As shown in Fig. 6, using
the face frontalization method [1] distorts LR input faces due
to the erroneous localization of facial components and its
symmetrizing operations. Therefore, the super-resolution
performance of frontal LR faces degrades dramatically.

For a fair comparison, we also include an evaluation for
the frontal view case in Fig. 11 where the frontalization is
not employed. As shown in Table 3, our method still outper-
forms all others in the frontal view case. Note that, our pre-
vious method TDAE [2] intends to increase the depth of its
decoder to achieve better super-resolution performance but
is limited by the GPU memory. In contrast, our network
employs an autoencoder, i.e., our transformer subnetwork,
before upsampling, and thus it does not require as much
memory as TDAE yet achieves better performance. This
also demonstrates that our transformer subnetwork can not
only frontalize LR profile faces but also improve super-
resolution performance.

6.4 Influence of Different Losses

Table 7 indicates the influences of different losses on the
performance quantitatively. As indicated in Fig. 4f and
Table 7, the feature-wise loss not only improves the visual
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Fig. 11. Results of the state-of-the-art face hallucination methods for frontal LR faces. Columns: (a) Unaligned non-frontal LR inputs. (b) Original
frontal HR images. (c) Bicubic interpolation. (d) [59]. (e) [60]. (f) [17]. (g) [51]. (h) [2]. (i) Our method.

quality but also increases the quantitative results. The
adversarial loss makes the hallucinated faces sharper and
more realistic, as shown in Fig. 4f. As illustrated in Table 7,
using adversarial loss is also able to force the super-resolved
face images to be frontal and thus improves the super-
resolution performance.

As demonstrated in Table 7, using our triplet loss
improves the final results. Because our triplet loss forces the
LR profile faces to be close to their frontal ones in the latent
subspace, the upsampled HR frontalized faces are more
similar to their frontal ground-truths. Furthermore, we also
illustrate the quantitative results without using our triplet
loss for different out-of-plane rotation degrees in Table 2,
marked as Ours ~. This experiment confirms that the triplet
loss does not degrade the performance of upsampling fron-
tal faces but improves the SR performance of LR profile
faces. In addition, our triplet loss is able to reduce the recon-
struction loss of LR profile faces earlier in the transformer
subnetwork rather than spreading the loss through the

TABLE 7
Quantitative Evaluations on the Influence of Different Losses
W/O ﬁtri W/Ltri
Lpiz ‘Cpiszeat Lpiz+feat+’f Epiz Epinrfeat [:piz+feat+7'
PSNR  25.01 25.17 25.33 25.19 25.33 25.69
SSIM 0.87 0.87 0.87 0.88 0.87 0.87
PE 1.32 1.17 1.17 1.31 1.05 1.10

entire upsampling network. Thus, the upsampling subnet-
work can focus on learning mappings between LR and HR
facial patterns as suggested in [22]. With the help of the trip-
let loss, we can even achieve better super-resolution perfor-
mance on LR frontal faces, as indicated in Table 2.

6.5 Performance on Faces Beyond 3D Models

Although our method is trained on a dataset of LR non-
frontal and HR frontal image pairs synthesized by using a
single 3D face model, our method can be effectively general-
ized to faces beyond the 3D model and the poses used in the
training stage. To demonstrate this, we randomly choose
face images from CelebA excluding the frontal faces used
for generating our training dataset. Then we spatially
deform, i.e., 2D transformation including rotations, transla-
tions and scale changes, and downsample these images to
obtain LR face samples. The synthesized LR faces do not
share 3D shapes or poses with the examples used in the
training dataset, and thus these samples are much more
challenging. As shown in Fig. 12, our network can halluci-
nate and frontalize such randomly chosen images, demon-
strating it is not restricted to these five poses and certain
models. Three reasons may account for this phenomenon:
(1) When generating our dataset, the selected faces used for
generating profile faces are not strictly frontal ones, which
increases the variety of the training poses. (2) The differen-
ces between different HR faces become less obvious in LR
faces, and faces in different poses can be approximated by
one of the five poses in very low resolutions. (3) In the
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Fig. 12. Results on LR face images beyond 3D model and training poses.
Our frontalized and hallucinated results.

process of encoding LR faces to latent representations, the
max pooling layers also reduce the differences of 3D models
and poses between the training and test LR faces.

We also apply our network to real LR face images chosen
from the WiderFace dataset [63], where LR faces are cap-
tured in the wild. Notice that the real LR faces are even blur-
rier than our training samples. Our super-resolved results
are shown in Fig. 13. Since our network does not need to
select one specific model for a particular angle, our method
does not require estimation of the face pose angles explic-
itly. Instead, our method frontalizes and hallucinates LR
profile faces in different angles by a single network.

6.6 Super-Resolving LR Faces Without
Frontalization

Since our method is an extension of our previous face super-
resolution methods [2], [22], [26], our network can be also
applied to super-resolve LR face images without frontaliz-
ing them. To this end, we use the ground-truth HR faces
that have the same poses as the input LR ones as supervi-
sion and remove the triplet loss in training. As seen in
Fig. 14, after retraining our network, our method can effec-
tively super-resolve LR faces in different poses, similar to
our previous methods [2], [26].

6.7 Limitations

Since our method uses a generic face model to generate faces
in different poses, we do not contain different expressions in
the training dataset. Therefore, our network does not account
for different facial expressions. Furthermore, limited by the

(a)

(b) (© (d

Fig. 13. Results on real LR face images. Top row: Real LR images.
Bottom row: Our frontalized and hallucinated results.

Top row: Real HR images. Middle row: Unaligned LR images. Bottom row:

generic 3D face model, we do not model eye-glasses or sun-
glasses in the training dataset either. When frontalizing
occluded regions, general occluded regions and sun-glasses
should yield different frontalization results due to the sym-
metry of sun-glasses and asymmetry of general occlusions.
This may introduce further ambiguity in the frontalization
process without exploiting any high-level semantic infor-
mation. Our training dataset is generated from face images
captured in normal illumination conditions where facial land-
marks can be detected for generating different poses. Since
facial landmark detectors may fail to localize landmarks
accurately under extreme illumination conditions and the

(e)

Fig. 14. Super-resolving LR faces without frontalization by our network.
Top row: Ground-truth HR images. Middle row: LR face images. Bottom
row: Our upsampled results.

c = B oW s ou oo oa

Ricubic VDSR SRGAN ~ Ma
(b)

Fig. 15. Evaluation of user study on the test images. (a) Average
scores of different methods for frontalization followed by hallucination.
(b) Average scores of different methods for hallucination followed by
frontalization.

CBN  TDAE  Ours

(a)
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generated faces by the 3D model may suffer severe artifacts,
we do not contain those faces for training. Besides, since the
illuminations on the faces are not symmetric, it is very chal-
lenging to frontalize realistic illumination conditions. Thus,
our method does not tackle such face images acquired under
extreme illumination conditions.

7 CONCLUSION

We introduced a transformative adversarial network to
upsample and frontalize very low-resolution unaligned face
images simultaneously in an end-to-end fashion. Our net-
work is able to learn how to frontalize and align LR faces
while upsampling 8 x. Benefiting from our proposed triplet
loss, we are able to enforce LR profile faces to be close to
their frontal counterparts in the latent subspace and thus
achieve better frontalization performance. With the help of
the intra-class discriminative information and the feature
constraints, our network generates realistic facial details.
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