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Deep Hierarchical Representation of Point Cloud
Videos via Spatio-Temporal Decomposition
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Abstract—In point cloud videos, point coordinates are irregular and unordered but point timestamps exhibit regularities and order.
Grid-based networks for conventional video processing cannot be directly used to model raw point cloud videos. Therefore, in this work,
we propose a point-based network that directly handles raw point cloud videos. First, to preserve the spatio-temporal local structure of
point cloud videos, we design a point tube covering a local range along spatial and temporal dimensions. By progressively subsampling
frames and points and enlarging the spatial radius as the point features are fed into higher-level layers, the point tube can capture video
structure in a spatio-temporally hierarchical manner. Second, to reduce the impact of the spatial irregularity on temporal modeling, we
decompose space and time when extracting point tube representations. Specifically, a spatial operation is employed to encode the local
structure of each spatial region in a tube and a temporal operation is used to encode the dynamics of the spatial regions along the tube.
Empirically, the proposed network shows strong performance on 3D action recognition, 4D semantic segmentation and scene flow
estimation. Theoretically, we analyse the necessity to decompose space and time in point cloud video modeling and why the network

outperforms existing methods.

Index Terms—Point cloud, spatio-temporal modeling, video analysis, action recognition, semantic segmentation, scene flow estimation

1 INTRODUCTION

OINT cloud videos provide more flexibility for action rec-
Pognition and decision making in poor visibility environ-
ments, and covers more precise geometry dynamics than the
conventional videos. A point cloud video can be represented
by a sequence of 3D point coordinate sets. Moreover, when
RGB images are available, they are often used as additional
features associated with 3D points to enhance the discrimina-
tiveness of point clouds. However, unlike conventional grid-
based videos, point cloud videos are irregular and unordered
in the spatial dimension and points do not emerge consis-
tently over time. Therefore, as shown in Fig. 1, existing grid-
based methods on conventional videos [1], [2], [3] are not
suitable for directly modeling raw point cloud videos.

To capture the dynamics in point cloud videos, one solu-
tion is converting a point cloud video to a sequence of 3D
voxels, and then applying grid-based 4D convolutions to the
voxel sequence. However, directly performing convolutions
on voxel sequences requires a large amount of computation
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and special engineering efforts, e.g., sparse convolution [4].
Furthermore, quantization errors are inevitable during voxe-
lization, which may restrict applications that require precise
measurement of scene geometry. Another solution is
appending 1D temporal dimension to 3D points and treating
point cloud videos as unordered 4D point sets [5], in which
point tracking is usually employed to capture the dynamics
in a region. Because points may flow in and out across
frames, computing an accurate point trajectory is extremely
difficult, especially for long videos. Moreover, simply
concatenating coordinates and timestamps together neglects
the temporal order and regularity, which may not properly
exploit the temporal information and lead to inferior
performance.

In this paper, we propose a novel point-based deep neu-
ral network, named PSTNet++, to directly encode raw point
cloud videos without resorting to unstable point tracking.
Inspired by 3D convolutional neural networks [1], [2], [3] on
conventional video modeling, our PSTNet++ encodes point
cloud videos in a spatio-temporally hierarchical manner.
Instead of tracing points along an entire video, the proposed
method models a video by capturing spatio-temporal local
structure changes and thus alleviates the requirement for
point tracking. Specifically, we introduce a point tube,
which is formed by selecting an anchor point and propagat-
ing the anchor and its surrounding spatial region to a few
nearest frames. By subsampling frames and points and
enlarging spatial regions as the point features are fed into
higher-level layers, our PSTNet++ can construct spatio-tem-
poral hierarchy for point cloud video modeling.

To reduce the impact of the spatial irregularity of points
on temporal modeling, we propose a point spatio-temporal
operation (PSTOp) that decouples the spatio-temporal
structure encoding. Specifically, PSTOp consists of (i) a spa-
tial operation that encodes the spatial structure of 3D points
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Fig. 1. lllustration of grid-based and point-based processing on videos.
(a) For a grid-based video, each grid represents a feature of a pixel,
where C, L, H and W denote the feature dimension, the number of
frames, height and width, respectively. A 3D convolution encodes an
input to an output of size C' x L' x H' x W. (b) A point cloud video con-
sists of a coordinate part (3 x L x N) and a feature part (C' x L x N),
where N indicates the number of points in a frame. Our point spatio-tem-
poral operation (PSTOp) encodes an input to an output composed of a
coordinate tensor (3 x L' x N’) and a feature tensor (C’ x L' x N'). Usu-
ally, L' < L and N’ < N so that networks can model point cloud videos in
a spatio-temporally hierarchical manner. Note that points in different
frames are not consistent, and thus it is challenging to preserve the spa-
tio-temporal structure.

and (ii) a temporal operation that encodes the temporal
dynamics of point cloud videos. Moreover, different from
the 4D point-based method [5], which defines point cloud
video distance as the maximum frame-level distance (Haus-
dorff distance) among all the corresponding timesteps and
neglects other timesteps, our PSTOp treats point cloud
video distance as the sum of all the frame-level distances
and thus properly reflects the global point cloud video
difference.

To conduct point-wise segmentation tasks, we extend our
PSTOp to a transposed version that interpolates temporal
dynamics and spatial features. Experiments on 3D action rec-
ognition, 4D semantic segmentation and scene flow estimation
demonstrate the effectiveness of PSTNet++ on point cloud
video modeling. The contributions of this paper are fourfold:

e Benefiting from our point tubes, we build a spatio-
temporally hierarchical network to preserve the local
structure of raw point cloud videos.

e We propose a point spatio-temporal operation that
decomposes spatial and temporal information in
encoding the local structure of raw point cloud
video.

e To decode point cloud videos for point-level predic-
tion tasks, we propose a point spatio-temporal trans-
posed operation that is able to interpolate the
temporal dynamics and spatial features.

e Extensive experiments on seven datasets indicate
that our method remarkably improves the accuracy
of 3D action recognition, 4D semantic segmentation
and scene flow estimation.

This paper is an extension of our previous work PSTNet [6].
For PSTNet, we did not provide a theorem to guarantee its
effectiveness. In PSTNet++, we improve PSTNet and theoret-
ically prove the effectiveness of PSTNet++ on raw point
cloud video modeling. Experiments also demonstrate that
PSTNet++ is superior to PSTNet. Moreover, compared to
our previous work PSTNet, we include another two datasets
for 3D action recognition, i.e., N-UCLA [7] and UWAS3DII [8].
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2 RELATED WORK

Learning Representations on Grid-based Videos. Impressive
progress has been made on generating compact and dis-
criminative representations for RGB/RGBD videos due to
the success of deep neural networks. For example, two-
stream convolutional neural networks [9], [10] employ a
spatial stream and an optical flow stream for video model-
ing. To capture the temporal dependencies of videos, recur-
rent neural networks [11], [12] and pooling techniques [13]
are employed. In addition, by stacking multiple 2D frames
into a 3D tensor, 3D convolutional neural networks [1], [2],
[3], [14] are widely used to learn spatio-temporal represen-
tations for videos, and achieve promising performance.
Besides, interpretable video or action reasoning methods
[15], [16] are proposed by explicitly parsing changes in
videos.

Static Point Cloud Processing. Static point cloud analysis
has been widely investigated in many problems, such as
classification, object part segmentation, scene semantic seg-
mentation [17], [18], [19], [20], [21], [22], [23], reconstruction
[24], [25] and object detection [26], [27]. Most recent works
aim to directly manipulate point sets without transforming
coordinates into regular voxel grids. Since a point cloud is
essentially a set of unordered points and invariant to per-
mutations of its points, static point cloud processing meth-
ods mainly focus on designing effective point-based spatial
correlation operations that do not rely on point orders.
However, those methods do not take the temporal dynamic
information into account and may produce suboptimal
results when processing point cloud videos.

Dynamic Point Cloud Modeling. Compared with static point
cloud processing, dynamic point cloud modeling is a fairly
new task but very important for intelligent systems to under-
stand the dynamic world. Fast and Furious (FaF) [28] converts
a point cloud frame into a bird’s view voxel and then extracts
features via 3D convolutions. MinkowskiNet [4] uses 4D Spa-
tio-Temporal ConvNets on a 4D occupancy grid. Fan and
Yang [29] proposed a series of point recurrent neural networks
(PointRNNs) for moving point cloud prediction. MeteorNet
[5] extends 3D points to 4D points by appending a temporal
dimension and then employs the framework of PointNet++
[18] to process those 4D points. 3DV [30] first integrates 3D
motion information into a regular compact voxel set and then
applies PointNet++ to extract representations from the set for
3D action recognition via temporal rank pooling. P4Trans-
former [31] employs transformer to avoid point tracking for
raw point cloud video modeling. Niemeyer et al. [32] learned a
temporal and spatial vector field in which every point is
assigned with a motion vector of space and time for 4D recon-
struction. Prantl ef al. [33] learned stable and temporal coherent
feature spaces for point-based super-resolution. CaSPR [34]
learns to encode spatio-temporal changes of object shapes
from dynamic point clouds for reconstruction and camera
pose estimation. Different from previous works, we propose a
point-based network to model spatio-temporal information of
raw point cloud videos via decomposing space and time hier-
archically. Besides, scene flow estimation [35], [36] can be seen
as computing the motion between two point cloud frames. Dif-
ferent from the scene flow estimation methods, our PSTNet++
aims to capture the long-term dependency of multiple frames.
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To construct the temporal hierarchy, our method employs a
frame selection mechanism, which involves a temporal kernel
size, a temporal striding size and a temporal padding size.

3 PRoOPOSED METHOD

In this section, we first present point tubes. Second, we
introduce how the proposed point spatio-temporal opera-
tion (PSTOp) extracts features from point tubes. In order to
address dense point prediction tasks, i.e., semantic segmen-
tation, we develop a point spatio-temporal transposed oper-
ation (PSTTransOp). Finally, we incorporate our operations
into deep spatio-temporally hierarchical networks, i.e.,
PSTNet++, to address different dynamic point cloud tasks.

Let P, € R*Y and F; € R“*" denote the point coordi-
nates and features of the ¢th frame in a point cloud video,
where N and C denote the number of points and feature
channels, respectively. Given a point cloud video
([P1; F1], [P2; Fo), ..., [PL; FL]), the proposed PSTOp will
encode the video to embedded frames ([P};F"],[P};
F}),....[P}; F})]), where L and L' indicate the number of
frames and P, € R*", and F,c R?*N' represent the
encoded coordinates and features (usually N’ < N, L' < L
and C' > O).

3.1 Point Tube

The power of 3D convolutional neural networks (CNNs) in
conventional video modeling comes from spatio-temporally
hierarchical architectures. This motivates us to build spatio-
temporal hierarchy in raw point cloud video modeling.
Grid-based 3D convolutions can be easily performed on reg-
ular conventional videos by shifting along the length, height
and width dimensions to capture the spatio-temporal local
structure. However, it is challenging to preserve spatio-tem-
poral local structure for point cloud video encoding,
because point cloud videos are irregular and unordered in
3D space and points emerge inconsistently across different
frames. To address this problem, we introduce a point tube.
In contrast to pixel cubes, i.e., the receptive field of 3D con-
volutions, in which pixels are distributed regularly, point
tubes are dynamically generated according to input videos
so that dense areas have more tubes than sparse ones. Spe-
cifically, the point tube is constructed as follows:

Temporal Anchor Frame Selection. For an entire point cloud
video, we need to select some anchor frames to generate our
tubes. Temporal anchor frames in a point cloud video are
automatically selected based on temporal radius (1), tem-
poral stride (s;) and temporal padding (p), as shown in the
solid frames in Fig. 2. Moreover, we set r, > p to avoid
selecting a padding frame as an anchor frame. Specifically,
the frames with timestamp {735 +1—pr+1—p+s,r+
1—p+2s,...,.L+p— rt} are selected as temporal anchor
frames, and L + 2p — 2r; — 1 can be divided by s; so that
point tubes are correctly constructed with the same tempo-
ral size. The length L' of the encoded video is then
expressed as L+2+_2” + 1.

Spatial Anchor Point Sampling. Once a temporal anchor
frame is selected, we need to choose spatial anchor points
that can represent the distribution of all the points in the
frame. Given a spatial subsampling rate s, this operation
aims to subsample N points to N’ = |&] points. We emplo
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the farthest point sampling (FPS) [18] to sample points in
each anchor frame. Point tubes are generated based on the
sampled anchor points.

Transferring Spatial Anchor Points. 3D convolutions can
effectively capture local changes within a cube rather than
tracking a specific pixel. Inspired by this idea, we propagate
the positions of sampled anchor points to the neighboring
frames without tracking, and they are regarded as the anchor
points in those frames. Specifically, each anchor point is
transferred to the r; nearest frames. In general, the temporal
radius 7, is much smaller, e.g., 1 or 2, than the input length,
to effectively model local temporal dynamics. The original
and transferred anchor points form the central axis of a tube.

Spatial Neighbor. This step aims to find the spatial neigh-
bors of every anchor point in each frame for performing the
spatial operation. A spatial radius 7, is used to search neigh-
bors within the tube slice, where spatial local structure of
points is depicted. Note that, padding is usually used in
grid-based operation to align feature maps. However,
point-based spatial operation is not conducted on grids and
thus spatial padding is not employed.

By capturing the spatio-temporal structure in point
tubes, our network is able to capture the dynamic changes
in local areas. The temporal radius r; and spatial radius r,
allow our point tube to capture spatio-temporal local struc-
ture. By progressively subsampling frames (according to s;)
and points (according to s;) and enlarging spatial radius r,
as the layer goes deeper, our point tube can capture longer
dependencies of temporal and spatial information of point
cloud videos, as shown in Fig. 2.

3.2 Point Spatio-Temporal Operation (PSTOp)
3.2.1 Decomposing Space and Time in Point Cloud
Video Modeling

To capture the structure in point tubes, we propose a point
spatio-temporal operation (PSTOp). Because point cloud
videos are spatially irregular and unordered but temporally
ordered, our PSTOp decouples these two dimensions in
order to reduce the impact of the spatial irregularity of
points on temporal modeling. Moreover, the scales of spa-
tial displacements and temporal differences in point cloud
videos may not be compatible. Treating them uniformly is
not conducive for network optimization. Besides, because
space and time are orthogonal and independent of each
other, this also motivates us to decompose spatial and tem-
poral modeling. In this way, we not only make the spatio-
temporal modeling easier but also significantly improve the
ability to capture the temporal information.

Our PSTOp consists of a spatial operation and a temporal
operation. The spatial operation is employed to capture the
local structure of points within each spatial region of a point
tube. The temporal operation is used to model the dynamics
of the spatial regions along the point tube. In this fashion,
we are able to capture the spatial layout and temporal
dynamics of points in a point tube. Note that, the decompo-
sition can also be expressed as applying temporal operation
first to encode point trajectories and then spatial operation
to trajectory features. However, doing so requires point
tracking to achieve point trajectories. Because it is difficult
to computing accurate point trajectories and tracking points
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Fig. 2. lllustration of the proposed point spatio-temporal operation (PSTOp). The input contains L = 5 frames, with N = 8 points per frame. (a) Point
tube construction. Based on the temporal radius r; = 1, temporal stride s; = 2, and temporal padding p = 1, the 1st, 3rd, 5th frames are selected as
temporal anchor frames. According to a spatial subsampling rate s, = 4, two spatial anchor points are sampled by FPS in each anchor frame. The
sampled anchor points are then transferred to the r, = 1 nearest neighboring frames. A point tube is constructed with a spatial radius r for the
anchor points. (b) The spatial operation encodes the local structure around each anchor point. (c) The temporal operation first encodes the 2r; + 1
spatial features individually and then merge the features to a spatio-temporal feature. As a result, the original point cloud video of size L x N =5 x 8

is encoded as a video of size L' x N’ = 3 x 2.

usually relies on point colors [5] and may fail to handle col-
orless point clouds, we opt to model the spatial structure of
irregular points first, and then capture the temporal infor-
mation from the spatial regions.

Benefiting from the decomposition of spatio-temporal
modeling, we can employ existing methods [18], [19], [20],
[21], [23] in static point cloud processing as the spatial oper-
ation. However, in order to encode long videos, the spatial
operation should be both computation-efficient and mem-
ory-efficient. In this paper, we employ the simple yet effec-
tive PointNet++ [18] as the spatial operation. Moreover, as
shown in Section 3.2.2, the use of PointNet++ can theoreti-
cally guarantee the effectiveness of our PSTOp. For the tem-
poral operation, since point cloud videos are temporally
ordered and regular, we propose to use a series of time-
related multilayer perceptrons (MLPs) to distinguish differ-
ent moments, instead of directly encoding timestamps like
MeteorNet [5]. Our PSTOp is formulated as follows,

M{™? = MAX S—MLP(F["" =) 5,5, 5.,
[[(82,8y.82) [ <rs

t+k

P - 3 TR, (M), (1)

szn

where (z,y,2) € P, and (8,,6,,5.) represents displacement.
The F\"** € RC is the feature of point (z,y, z) at time ¢. The
rs and r; are the spatial radius and temporal radius, respec-
tively. The S—MLP is the shared MLP of the spatial operation.
The T-MLP_,,,...,7—-MLP,, are the time-related MLPs of
the temporal operation. We illustrate our PSTOp in Fig. 2.

3.2.2 Theoretical Analysis

For simplicity, we do not consider spatial or temporal
radius in this section. Let S=[P;F], D=3+ C and X =
{88 € [0,1]”,|8| = N, N € Z"} is the set of D-dimensional
point clouds inside a D-dimensional unit cube. Suppose &
denotes the set of point clouds at time ¢t € Z and &} x & x
.-+ x X, is the set of point cloud videos of length L. Suppose
S=(81,85,...,81) € X1 x Xy x --- x X is a specific video
sampled from the set of point cloud videos.

I Static Point Cloud (Individual Point Cloud Frame)

A point cloud is essentially a unordered point set. There-
fore, the Hausdorff metric can be used to measure the dis-
tance of two individual point cloud frames [5], [17], [18].
Specifically, the Hausdorff distance returns the greatest of
all the distances from a point in one cloud to the closest
point in the other cloud, to measure how far two point cloud
frames are from each other. Given two point clouds S and
S', the Hausdorff distance dy (-, ) is defined as follows,

du(S,8") = max{ sup inf d(s, s'), sup inf d(s, s’)}, 2
sc§ s'es’ ey €8

where d(-, -) is a distance metric for two points. Based on the
Hausdorff distance, PointNet [17] theoretically proves its
ability to model static point clouds (shown in Table 1).

1. Point Cloud Video

A point cloud video is a sequence of point clouds. To
measure the distance between two point cloud videos,
MeteorNet [5] defines the video-level distance as the maxi-
mum per-frame Hausdorff distance among all respective
frame pairs,
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TABLE 1

Comparison Among MinkowskiNet [4], PointNet [17]/PointNet++ [18], MeteorNet [5], PSTNet [6] and our PSTNet++

Voxel-based Method

Method Network
N LL/2] (w/2] LH/2] [D/2] ) N
MinkowskiNet Fgu’y’Z) = > Wl(h’w"d) ~Ft(il+w’y+h’z+d)
l=—|L/2] w=—|W/2] h=—|H/2] d=-|D/2]
Point-based Method
Method Distance Metric Theorem Network
Suppose f : X — R is a continuous set
function w.r.t Hausdorff distance dg(,-).
PointNet, Hausdorff: dg(+,+) | Ve > 0, 3 a continuous function h and a | F/(*¥:2) =  MAX  MLP(F@+oy+dy,2432) 5,5, 5.)
PointNet++ continuous ~ such that for any S € &, 162,8y,82) <7
(static point) ‘ S) — MAX  {h(S? ‘ '
f(8) ’y(ie{lvu“N}{ (S9)})] <e
Suppose f X1 X X1 X - X X —
ds(S,8') = R is a continuous function w.r.t dg(-,-). s s s
max {dy(St,S;)} | Ve > 0, 3 a continuous function h Ft/(z‘y‘z) = MAX l\riLP(Ft(i;Lt @0y 2t 2)769376y75275t)
MeteorNet ‘ and a continuous ~ such that for any 162,8y.82)lI<7s
where S = (51,82,---,8L) € X1 x -+ x XL,
el L) [1®) - a(,MAX {h(S{n))| < | wheredi =it le{l o L}
te{l,---, s
i6{17...7]\]}
Mt(.r,,y,z) _ S(62,84,82) . (Ft(:c+5;:,y+5y,z+5z))
Hémaéyﬁz)HS'V'a
PSTNet - -
F/(l‘,y,z) — Tzf 779 . (M(I,y,z))
t pEa t
ds(S,9) = Suppose f : X1 X Xo X -+ x X, — Risa
L continuous function w.r.t dg(-,-). Ve > 0, ’
PR (dr1(St, 1)) | 37a continuous function £, a set of con- | M) = MAX S-MLP(F& 00 vt0n40) 5 5 5.
I_h .| tinuous functions 71, -+ ,ny and a contin- 162,6y,62)lI<rs
PSTNet++ | W etre At 1ds uous function v such that for any S = e
continuous  an
S1,82,-+-,8S X1 X Xo X - X X, | pll@y.2) _ (z,y,2)
strictly increasing (81, 82, b9 L) € X1 x Az x X AL | Fy = > T-MLPy, (M, )
d Xt(0) =0 S)— MAX_{h(S)}))| <e. =
and A:(0) 1) = ( X m( MAX (r(SH}))| <

The voxel-based MinkowskiNet employs a 4D convolution to capture the spatio-temporal structure of point cloud videos. The L, W, H and D denote length,
width, height and depth of the size of the 4D convolution kernel W. MeteorNet extends 3D points to 4D points (z,y, z,t) and models the spatial and temporal
structure together. By contrast, we propose to decouple space and time in modeling to better exploit the temporal order and regularity. The continuous functions
in theorems are implemented as MLPs in networks. In practice, the y function in theorems is usually omitted in networks.

MeteorNet :dg(S,S) = maXt:L...,L{dH(Sta S;)} @)

However, as point cloud videos are essentially frame
sequences, this metric focuses on the greatest frame-level
distance and neglects other frame-level distances. In this
way, it cannot properly represent the global difference
between two point cloud videos and may overestimate the
difference at a certain timestep. To better model the distance
of two point cloud videos, we propose to use the sum of
per-frame Hausdorff distance as the distance metric,

L
PSTNet++(w/otemporal) : ds(S,S') = ZdH(St7 s). @)
=1

In this way, the difference at each moment in a video is
involved and considered. However, a problem is that
Eq. (4) neglects the temporal structure because all moments
in a video are treated equally. To encode temporal informa-
tion, we add a time-related function \; for each moment ¢,

L
PSTNet++(w/temporal) : dg(S,S') = Z/\t (du(Si,S))). (5)
t=1
Each time-related function is continuous and strictly
increasing. Moreover, to be consistent with distance, A;(0) is
0. The metric Eq. (4) can be seen a special case of the general
metric Eq. (6) when A1, Ay, ..., Ar are identity functions.

Based on our point cloud video distance metric Eq. (5),
we provide the theoretical foundation for our PSTNet++ by
showing the universal approximation ability of PSTOp
operation to continuous functions on point cloud videos.

Theorem 1. Suppose f: X1 x Xy x --- x X, — R is a contin-
uous function w.r.t the ds(-,-) in Eq. (5). Ve > 0, 3 a continu-
ous function h, a set of continuous functions ny,...,n; and a
continuous function y such that for any S = (S1,Ss,...,SL)
EX x Xy x---x Xp,

’f(S) - y<§; n (MAX (h(S,),.. .7h(SfV)))) ’ < e

where Sg, e va are the elements of Sy extracted in a certain
order and MAX is a vector max operator that takes N vectors
as input and returns a new vector of the element-wise
maximum.

The proof of this theorem is in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3135117.
The h function is corresponding to S—MLP and the
N, ..,n functions, which are derived from the Ay,..., A\
functions, are corresponding to 7 —MLPs in the PSTOp
operation.
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Fig. 3. Spatio-temporally hierarchical PSTNet++ for 3D action recognition. The architecture uses six PSTOp layers to extract point cloud video fea-
tures and one fully-connected (FC) layer for classification. Following [5], [6], [30], we only use point coordinates for 3D action recognition in this paper.

Therefore, the number of input channels is 3.

III. Discussion

1) Theoretical explanation for decomposing space and time.

As shown in Table 1, the video distance metric of Meteor-
Net, i.e., Eq. (3), uses the max operation to encode the tem-
poral difference, which is consistent with the spatial
distance metric, i.e., Hausdorff distance. Therefore, Meteor-
Net can model the spatial and temporal information simul-
taneously. However, as the max operation may not
properly represent global temporal distance and may lead
to inaccuracy, we employ the sum operation to capture the
temporal difference. Due to the inconsistency of basic oper-
ations between the spatial and temporal dimensions, we
decompose space and time in modeling.

2) PointNet++ can be viewed as a special case of PSTNet++.

When there is only one frame in a video, Theorem 1
becomes |f(S) — (yon,)(MAX(h(S"),...,h(S")))| < ¢ which
is equal to the theorem of PointNet++ (shown in Table 1) by
considering y o 1, as a single function. Therefore, PointNet++
can be seen as a special case of our PSTNet++.

3) Comparison with MinkowskiNet [4].

MinkowskiNet is a voxel-based method, which jointly
captures the spatial and temporal structure of 4D tesseracts
via a 4D convolution kernel. In contrast, our PSTNet++ is a
point-based method, which separately models the spatial
and temporal structure of point tubes via a spatial MLP and
a set of temporal MLPs. Both MinkowskiNet and PSTNet++
aim to capture the structure of a spatio-temporal local area,
which is the 4D tesseract for MinkowskiNet and point tube
for PSTNet++. The different is that, as a voxel-based method,
MinkowskiNet can learn a 4D convolution kernel from dif-
ferent discrete directions or displacements. In contrast, as
point-based, PSTNet++ captures the spatial structure by
directly encoding continuous directions or displacements.
Moreover, MinkowskiNet treats space and time equally and
models the spatial and temporal structure together, while
our PSTNet++ decouples spatio-temporal modeling, as
space and time are orthogonal and independent and the
scales of space and time are not compatible.

3.3 Point Spatio-Temporal Transposed Operation
(PSTTransOp)

After PSTOp, the original point cloud video is both spatially

and temporally subsampled. However, for point-level pre-

diction tasks, we need to provide point features for all the

original points. Thus, we develop a point spatio-temporal

transposed operation (PSTTransOp). Suppose ([P};F!],
[Py; Fy), ..., [P); F)]) is the encoded video of the original
one ([Py;Fy],[Py;Fs),...,[Pr;Fp]). PSTTransOp propa-
gates features (F|, F),..., F,) to the original point coordi-
nates (Pi,Ps,...,P;), thus outputting new features
(F),Fy,... FY), where F! ¢ R“* and C" denotes the new
feature dimension. To this end, PSTTransOp first recovers
the temporal length by a temporal transposed operation, and
then increases the number of points and assigns temporal
features to original points via feature propagation [18],

M@ = T MLP, (F),

t+k
(2485 y+8y,2+8>)
<Z(aw,ay«s;)<rw(5z:5y:5z)Mt+k ! )

F'@vd) _ s MLP
2} 5r 8y 8)ll<r WBar 8y 8)

t+k

(6)

where k € [—r¢, 1] and w(é,,8,,8.) = H An illustra-

1
(82,8y,82) 2
tion of PSTTransOp operation is shown in Appendix B,
available in the online supplemental material.

3.4 PSTNet++ Architectures
PSTNet++ for 3D Action Recognition. As shown in Fig. 3, we
employ six PSTOp layers and a fully-connected (FC) layer
for 3D action recognition. In the 1st, 2nd, 4th, 6th layers, the
spatial subsampling rate is set to 2 to halve the spatial reso-
lution. The spatial radius progressively increases to grow
spatial receptive fields when the network goes deeper. In
the 2nd and 4th layers, the temporal stride is set to 2 to
halve the temporal resolution. In the 2-4 layers, the temporal
radius is set to 1 to capture temporal correlation. Note that,
in the 1st PSTOp layer, the temporal radius is set to 0, in
which only the spatial structure is modeled. After the
PSTOp layers, average and max poolings are used for spa-
tial pooling and temporal pooling, respectively. Finally, the
FC layer maps the global feature to action predictions.
PSTNet++ for 4D Semantic Segmentation. We use four
PSTOp layers and four PSTTransOp layers for 4D seman-
tic segmentation. The spatial subsampling rate is set to 4
to reduce the spatial resolution in the 1-3 PSTOp layers
and 2 in the fourth PSTOp layer. The spatial radius of
PSTOp layers progressively increases to grow spatial
receptive fields when the network goes deeper. In the
3rd PSTOp and 2nd PSTTransOp layers, the temporal
radius is set to 1 to capture temporal correlation. Skip
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TABLE 2
Architecture Specs of PSTNet++ for 3D Action Recognition
and 4D Semantic Segmentation. The r, denotes the initial
spatial radius

PSTNet++ for 3D Action Recognition

Layer S—MLP 7 —-MLP

T S MLP T Sy P MLP
PSTOp1 To 2 [45] 0 1 [0, 0] [64]
PSTOp2a 2r, 2 [96] 1 2 [1,0] [128]
PSTOp2b  2r, 1 [192] 1 1 [1,1] [256]
PSTOp3a 4r, 2 [384] 1 2 [1,0] [512]
PSTOp3b  4r, 1 [768] 1 1 [1,1] [1024]
PSTOp4 4r, 2 [1536] 0 1 [0, 0] [2048]
FC 2048 — # action classes

PSTNet++ for 4D Semantic Segmentation

Encoding S—MLP T —-MLP

T Ss MLP T8 P MLP
PSTOp1 Ty 4 [32, 32] 0 1 [0,0] [128]
PSTOp2 2r, 4 [64, 64] 0 1 [0, 0] [256]
PSTOp3 4r, 4 [128,128] 1 1 [0, 0] [512]
PSTOp4 8, 2 [256,256] O 1 [0,0] [1024]
Decoding T-MLP' S—MLP'

Tt St p MLP MLP
PSTTransOp4 0 1 [0, 0] [256] [256]
PSTTransOp3 1 1 [0, 0] [256] [256]
PSTTransOp2 0 1 [0, 0] [256] [128]
PSTTransOpl 0 1 [0, 0] [128] [128]
1D Convolution L x N x 128 — L x Nx # semantic
classes

The temporal padding p is split as [p1,p2], where p\ and p, denote the begin-
ning padding and the ending padding, respectively. As 3D action recognition
usually uses many frames, to improve computational efficiency and reduce
memory usage, we only use only layer in each MLP of our 3D action recogni-
tion architecture.

connections are added between the PSTOp layers and
PSTTransOp layers. After the last PSTTransOp layer, a
1D convolution layer is appended for semantic predic-
tions. Our PSTNet++ for 4D semantic segmentation is
illustrated in Appendix C, available in the online supple-
mental material.

In addition, batch normalization and ReLU activation are
inserted between layers. The specs of our PSTNet++ archi-
tectures for 3D action recognition and 4D semantic segmen-
tation are described in Table 2.

4 EXPERIMENTS

In this section, we conduct a video-level classification, i.e.,
3D action recognition, and a point-level classification, i.e.,
4D semantic segmentation, to demonstrate the effectiveness
and superiority of PSTNet++. We also apply our PSTNet++
to scene flow estimation to explicitly show its ability for
motion modeling.

To build a unified network and train the network with
mini-batch, the number of spatial neighbors needs to be
fixed. We follow existing point-based works [6], [18], [19],
[20] to randomly sample a fixed number of spatial
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neighbors. For 3D action recognition, the number is set to 9.
For 4D semantic segmentation, we follow [5], [6] to set the
number to 32. If the actual number of neighbors of a point is
less than the set number, we randomly repeat some
neighbors.

We train our models for 35 epochs with the SGD opti-
mizer. Learning rate is set to 0.01, and decays with a rate of
0.1 at the 10th epoch and the 20th epoch, respectively.

4.1 3D Action Recognition

To show the effectiveness in video-level classification, we
apply our PSTNet++ to 3D action recognition. Following
[5], [6], [30], we sample 2,048 points for each frame. Point
cloud videos are split into multiple clips (with a fixed num-
ber of frames) as inputs. For training, video-level labels are
used as clip-level labels. For evaluation, the mean of the
clip-level predicted probabilities is used as the video-level
prediction. Point colors are not used.

4.1.1  MSR-Action3D

The MSR-Action3D [40] dataset consists of 567 Kinect v1
depth videos, with 20 action categories and 23K frames in
total. We use the same training/test split as previous works
[5], [6], [39]. Following [5], [6], batch size is set to 16. We set
the initial spatial radius r, to 0.7. We conduct experiments
with 10 times and report the mean.

Accuracy comparison with the state-of-the-art. We compare
our PSTNet++ with skeleton-based, depth-based and point-
based 3D action recognition methods on this dataset. The
accuracy comparisons are reported in Table 3. The proposed
PSTNet++ significantly outperforms all the state-of-the-art
methods, demonstrating the superiority of our PSTOp on
feature extraction. For example, when using 24 frames, our
PSTNet++ outperforms MeteorNet by 4.18%.

Comparison with skeleton-based and depth-based methods.
Skeleton-based methods ignore the object and scene infor-
mation during action recognition. In contrast, our point-
based method is able to take the advantage of all the infor-
mation in a video and thus enhance action reasoning.
Depth-based methods project width and height but treat
depth as pixel value. As width, height and depth are treated
in different ways, depth-based methods may increase the
challenge for neural networks to understand 3D data. More-
over, it is difficult to capture precise 3D motion from 2D
depth frames. In contrast, our point-based method treats
width, height, and depth equally, and thus properly models
3D data and captures 3D motion.

Memory usage and computational efficiency. To investigate
the running time, we conduct experiments using 1 Nvidia
Quadro RTX 6000 GPU. As shown in Table 4, our PSTNet+
+ uses fewer parameters and is more efficient than Meteor-
Net. This is because, on one hand, MeteorNet employs
three-layer MPLs while the MLPs in our PSTNet++ only
contain one layer. One the other hand, when applying to 3D
action recognition, to better capture temporal structure,
besides each spatio-temporal neighbor’s feature and 4D dis-
placement, MeteorNet also feeds the anchor’s feature into
the input of its MLPs. By contrast, benefiting from decom-
posing space and time, the S—MLPs in our PSTNet++ only
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TABLE 3

Action Recognition Accuracy (%) on the MSR-Action3D [40]

TABLE 5
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Influence of Spatio-Temporal Hierarchy (Hier) and Spatio-Tem-

Dataset poral Decomposition (Decom) on Point Cloud Video Modeling
. . Accuracy (%)
Method Input # Frames Accuracy Method S hier T hier Decom To-frame 24-frame T
Vieira et al. [37] depth 20 78.20 MeteorNet [5] v 88.21 8850  0.29
Klaser et al. [38] depth 18 81.43 v/ v 89.20 9059 1.39
Actionlet [39] skeleton all 88.21 PSTNet++ v v 88.85 89.90  1.05
PointNet++ [18] point 1 61.61 4 4 4 %024 9268 244
MeteorNet [5 oint 4 78.11 Note that, in order not to decompose space and time in PSTNet++, we use a
[5] p pose sp
8 81.14 similar operation to MeteorNet, which treats a 3D point cloud video as a 4D
12 86.53 point set so that pint coordinates and timestamps can be modeled together. The
16 88.21 MeteorNet method can be seen as a baseline in which only spatial hierarchy is
24 3 8. 50 constructed. Experiments are conducted on MSR-Action3D. The “1” indicates
’ the improvement of accuracy from 16 frames to 24 frames.
PSTNet [6] point 4 81.14
8 83.50 o o 9"
12 87.88 % 3 R
16 89.90 024 4o 92 o164
24 91.20 g —52 &
> - 90.59
PSTNet++ (ours) point 4 81.53 g E® om 8951
8 83.50 st S 8 89.2
12 88.15 - "
16 90.24 5 8228 87 8676
24 92.68 82 86 8641
0 1 2 3 4 01 03 05 07 09 11 13 15 17 19
temporal radius spatial radius
TABLE 4 Fig. 4. Influence of temporal radius and initial spatial radius on MSR-

Comparison of Memory Usage and Computational Efficiency on
3D Action Recognition

Method # Parameters (M) Running time (ms)
16 frame 24 frame
MeteorNet [5] 17.6 54.46 80.11
PSTNet [6] 8.44 31.92 43.88
PSTNet++ (ours) 8.44 31.76 43.19

need to encode each spatial neighbor’s feature and 3D dis-
placement, and thus save parameters and computation.
When using one-layer MPLs for 3D action recognition,
our temporal operation is identical to the temporal convolu-
tion of PSTNet. To highlight the difference in the spatial
modeling, we reformulate their spatial operations as follows,

PSTNet Z S(ﬁzﬁy,(sg) . (F£Z+&L’s'y+5y.z+5;>)

=3 (Wi (028,80 - 1@ Wy ) - Ry
_ Z (W1 (5, 5}/752)7") o (Wz ] FE.:;+SIAJ/+8;/,Z+5;))

PSTNet++:MAX S—MLP (FE”’”-’“’*“”’M“, 82,8, sz)
— MAX W - (Fi““”““”‘”‘”), 82,8y, Sz)
= MAX(W1 - (8,,8,,8.)" ) + (W - B0

where W; € ROm3, W, e Rm*C W =[W,W,], 1=
(1,...,1) € R™ is for broadcasting, - is matrix multiplica-
tion, ® is element-wise product, and C,, is the dimension of
the intermediate feature. As shown in the above equations,
the spatial operation of our PSTNet++ uses the same num-
ber of parameters as the spatial convolution of PSTNet. The
difference is that PSTNet is based on sum pooling and
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Action3D with 24 frames.

element-wise product while PSTNet++ is based max pool-
ing and addition. Because addition requires less computa-
tion than element-wise product, the proposed PSTNet++ is
slightly faster than PSTNet.

What does PSTOp learn? To investigate what PSTOp
learns, we visualize the output of each layer of our PSTNet+
+ for 3D action recognition in Fig. 5. Because we use ReLU
as the activation function, all outputs are greater than zero
and large outputs indicate high activation. To visualize the
outputs, we squeeze point feature vectors to scalars via [;
norm. As expected, PSTOp outputs higher activation on
moving areas. This demonstrates that our PSTOp captures
the most informative clues in action reasoning.

4.1.2 N-UCLA and UWASDII

The N-UCLA [7] dataset contains 1475 action videos, with
10 action categories. These videos are captured using Micro-
soft Kinect v1 from 3 different viewpoints. The cross-view
evaluation setting is used for test. The UWA3DII [8] dataset
contains 1075 videos, with 30 categories. The video samples
are captured using Microsoft Kinect v1. Batch size is set to
16. The initial spatial radius r, to 0.5.

The experimental results are listed in Table 6. The pro-
posed PSTNet++ outperforms all the state-of-the-art meth-
ods, demonstrating the effectiveness of our method. For
example, with the UWA3DII dataset, our PSTNet++ outper-
forms 3DV-PointNet++ by 3.0%.

4.1.3 NTU RGB+D 60 and NTU RGB+D 120

The NTU RGB+D 60 [44] is the second largest dataset for 3D
action recognition. It consists of 56K videos, with 60 action
categories and 4M frames in total. The videos are captured

using Kinect v2, with 3 cameras and 40 subjects (performers).
er 31,2025 at 13:23:23 UTC from IEEE Xplore. Restrictions apply.
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Input: N = 2048

PSTOp1: N = 1024
w/o temporal modeling

PSTOp2a: N = 512

PSTOp2b: N = 512

PSTOp3a: N = 256

PSTOp3b: N = 256

PSTOp4: N = 128

Fig. 5. Visualization of the output of each PSTOp layer in PSTNet++. Top: input point cloud video, where color encodes depth. Bottom: output of
PSTOp, where brighter color indicates higher activation. For the input point cloud video, color encodes depth. For the outputs, brighter color indicates
higher activation. Input videos consist of 24 frames. Due to the spatial subsampling s, and the temporal stride s;, points and frames progressively
decrease along the network layers. Interestingly, PSTOp outputs high activation to salient motion, which supports our intuition that PSTOp effectively
captures dynamics of point cloud videos. Note that, PSTOp1 does not capture temporal correlation because its temporal radius r; = 0. In this case,

PSTOp1 focuses on the appearance and therefore outputs high activation to the performer contour. Best viewed in color.

TABLE 6 TABLE 7
Action Recognition Accuracy (%) on N-UCLA [7] and Influence of Temporal Modeling on PSTNet++ in 3D Action
UWASDII [8] Recognition

Method Input N-UCLA UWAS3DII Method Point Cloud Video Distance Acc (%)
HON4D [41] depth 39.9 289 w/o temporal ds(S,S') = YK, du(S, S)) 87.6
SNV [42] depth 42.8 29.9 N _ L '
AOG [7] depth i 67 w/ temporal ds(S,8") = > M(du (81, S))) 91.4
HOPC [8] depth 80.0 52.2 Experiments are conducted on NTU RGB+D 60 with the cross-subject evalua-
MVDI [43] depth 84.2 68.1 Fon metric.
3DV-PointNet++ [30]  voxel + point 95.3 73.2
PSTNet [6] point 95.1 75.6 on NTU RGB+D 60 shows PSTNet++ outperforms PointNet
PSTNet++ point 95.5 76.2 ++ by a large margin of 11.3%.

The dataset defines two types of evaluation, i.e., cross-subject
and cross-view. The cross-subject evaluation splits the 40
performers into training and test groups. Each group con-
sists of 20 performers. The cross-view evaluation uses all the
samples from camera 1 for testing and samples from cameras
2 and 3 for training. The NTU RGB+D 120 [45] dataset, the
largest dataset for 3D action recognition, is an extension of
NTU RGB+D 60. It consists of 114K videos, with 120 action
categories and 8M frames in total. The videos are captured
with 106 performers and 32 collection setups (locations and
backgrounds). Besides cross-subject evaluation, the dataset
defines a new evaluation setting, i.e., cross-setup, where 16
setups are used for training, and the others are used for
testing.

Batch size is set to 16. We set the frame sampling rate and
the initial spatial radius 7, to 2 and 0.1, respectively.

As indicated in Table 8, PSTNet++ outperforms other
approaches. Particularly, as indicated by the cross-setup
evaluation on NTU RGB+D 120, PSTNet++ outperforms the
second best 3DV-PointNet++ [30] by 6.2%. Moreover, com-
pared to PointNet++ [18], which only exploit appearance
information, our PSTNet++ effectively captures temporal
correlation and thus significantly improves recognition
accuracy. For example, the cross-subject evaluation results

4.2 4D Semantic Segmentation

To demonstrate that our method can be generalized to
point-level dense prediction tasks, we apply PSTNet++ to
4D semantic segmentation. Following the works [4], [5], [6],
we conduct experiments on point cloud videos with length
of 3 frames.

Synthia 4D [4] uses the Synthia dataset [50] to create 3D
videos. The Synthia 4D dataset includes 6 sequences of driv-
ing scenarios, where both objects and cameras are moving.
Each sequence consists of 4 stereo RGB-D images taken
from the top of a moving car. Following [5], we reconstruct
3D point cloud sequences from RGB and depth videos, and
use the same training/validation/test split, with 19,888/
815/1,886 frames, respectively. Following [5], batch size is
set to 12. We set the initial spatial radius r, to 0.9.

We compare PSTNet++ with the state-of-the-art voxel-
based and point-based methods on this dataset. Note that,
although semantic segmentation can be achieved from a sin-
gle frame, exploring temporal consistency would facilitate
exploring the structure of scenes, thus improving segmenta-
tion accuracy and robustness to noise. As seen in Table 10,
our PSTNet++ outperforms the state-of-the-art. The Synthia
4D dataset contains 12 categories. Our PSTNet++ achieves
four best accuracies among them. Moreover, our method
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TABLE 8
Action Recognition Accuracy (%) on the NTU RGB+D 60 [44] and NTU RGB+D 120 [45] Datasets
Method Input NTU RGB+D 60 NTU RGB+D 120
Subject View Subject Setup
Body Pose Evolution Map [46] skeleton - - 64.6 66.9
2s-AGCN [47] skeleton 88.5 95.1 - -
DGNN [48] skeleton 89.9 96.1 - -
Wang et al. [49] depth 87.1 84.2 - -
MVDI [43] depth 84.6 87.3 - -
NTU RGB+D 120 Baseline [45] depth - - 48.7 40.1
PointNet++ (appearance) [18] point 80.1 85.1 721 79.4
3DV (motion) [30] voxel 84.5 95.4 76.9 92.5
3DV-PointNet++ [30] voxel + point 88.8 96.3 82.4 93.5
PSTNet [6] point 90.5 96.5 87.0 93.8
PSTNet++ (ours) point 91.4 96.7 88.6 93.8

saves 0.11M, relative 6% of parameters compared to Meteor-
Net [5]. We visualize a few segmentation examples in Fig. 6.

4.3 Scene Flow Estimation

Following the previous PSTNet [6] work, we also apply our
PSTNet++ to scene flow estimation. We follow the setting
proposed by MeteorNet [5], ie., given a point cloud
sequence, estimating a flow vector for every point in the last
frame. However, because our point tube is constructed
according to the middle frame, which is not applicable to the
last-frame scene flow estimation, we follow [6] to adapt tem-
poral anchor frame selection and spatial anchor point trans-
ferring. Specifically, we select the last frame in each tube as
the anchor frame. Then, after spatial sampling, each anchor
point is transferred to its previous nearest [ frames. Follow-
ing [5], [6], we first train our model on a FlyingThings3D
dataset according to the synthetic method in [35], and then
fine-tune the model on a KITTI scene flow dataset [5]. Point
tracking is not used. As shown in Table 9, our PSTNet++
achieves the highest accuracy on scene flow estimation.

4.4 Ablation Study
4.4.1 Spatio-Temporally Hierarchical Modeling

Because points are not consistent and even flow in and out of
a spatial region, embedding points in a spatially local area
along an entire video handicaps capturing accurate local
dynamics of point clouds. To address this problem, we con-
struct temporal hierarchy in point cloud modeling. As shown
in Table 5, even though without the decomposition of spatio-
temporal encoding, our PSTNet++ still outperforms Meteor-
Net. Moreover, without temporally hierarchical modeling,
MeteorNet only achieves a slight improvement of 0.29%
from 16 frames to 24 frames. By contrast, PSTNet++ achieves
an improvement of 1.39%, showing the effectiveness of tem-
porally hierarchical modeling when encoding long videos.

4.4.2 Decomposition of Spatio-Temporal Encoding

To investigate our PSTNet++ without decomposing space
and time, we treats a 3D point cloud video as a 4D point set
so that our method can model pint coordinates and time-
stamps together. This makes our method similar to Meteor-
Net, which is based on the max-based video distance metric
Eq. (3). As show in Table. 5, even though without temporal
hierarchy, decomposing space and time helps our PSTNet+

+ to outperform MeteorNet. Moreover, from 16 frames to 24
frames, our PSTNet++ achieves an improvement of 1.05%,
while MeteorNet only achieves a slight improvement of
0.29%. The supports our motivation that, by decomposing
space and time, we can leverage our sum-based video dis-
tance metric Eq. (5), which is able to reflect the global differ-
ence of two point cloud videos. However, the max-based
video distance metric used in MeteorNet tends to focus on a
specific moment and miss the information in other frames
and thus cannot adequately capture the temporal structure
of long videos.

4.4.3 Temporal Modeling

In this paper, we propose to use the sum of per-frame Haus-
dorff distance as the point cloud video distance metric, as
shown in Eq. (4). In this way, the difference at each moment
in a video is involved and considered. Moreover, we further
add the temporal encoding, i.e., {\;}, into Eq. (4) to capture
the temporal structure, resulting in Eq. (5). In this section,
we investigate the influence of the temporal encoding. As
shown in Table 7, exploiting the temporal encoding effec-
tively improves action recognition.

4.4.4 Clip Length

Usually, information is not equally distributed in videos
along time. Short point cloud clips may miss key frames
and thus confuse models as noise. Therefore, as shown in
Table 3, increasing clip length (i.e., the number of frames)
benefits models for action recognition.

4.4.5 Temporal Radius

The temporal radius r; controls the temporal dynamics
modeling of point cloud videos. Fig. 4 shows the accuracy
on MSR-Action3D with different ;.

TABLE 9
Scene Flow Estimation Accuracy on the KITTI Scene Flow
Dataset [5]
Method Input # Frames End-Point-Error
FlowNet3D [35] points 2 0.287
MeteorNet [5] points 3 0.282
PSTNet [6] points 3 0.278
PSTNet++ (ours) points 3 0.276
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TABLE 10
Semantic Segmentation Result (mloU %) Details on the Synthia 4D Dataset [4]
Method Input #Frms #Params Bldn Road Sdwlk Fence Vegittn Pole Car T.Sign Pedstrn Bicycl Lane T.Light Average
3D MinkNet14 [4] voxel 1 1931 M 89.39 97.68 6943 86.52 9811 97.26 93.50 7945 9227 0.00 44.61 66.69 76.24
4D MinkNet14 [4] voxel 3 23.72M 90.13 9826 7347 8719 99.10 9750 94.01 79.04 9262 0.00 50.01 6814 77.46
PointNet++[18]  point 1 0.88M 96.88 97.72 86.20 9275 97.12 97.09 90.85 66.87 78.64 0.00 7293 7517 7935
MeteorNet [5] point 3 1.78M 9810 97.72 88.65 9400 9798 97.65 93.83 84.07 8090 0.00 71.14 77.60 81.80
PSTNet [6] point 3 1.67M 9691 98.33 90.83 95.00 96.96 97.61 95.15 7745 85.68 0.00 7571 7728 8224
PSTNet++ (ours) point 3 1.67M 97.62 9823 90.88 96.01 99.34 9730 97.82 7746 87.61 0.00 7510 7370  82.60

#Frms: number of frames. #Params: number of parameters.

When r; is set to 0, temporal correlation is not captured.
However, PSTNet++ can still observe 24 frames and the
pooling operation allows PSTNet++ to capture the pose
information of an entire clip. Moreover, some actions (e.g.,
“golf swing”) can be easily recognized by a certain pose,
and thus PSTNet++ with ry = 1 can still achieve satisfactory
accuracy.

When 7; is greater than 1, PSTNet++ models temporal
dynamics and therefore improves accuracy on actions that
rely on motion or trajectory reasoning (e.g., “draw x”,
“draw tick” and “draw circle”).

When r; is greater than 3, the accuracy decreases. This
mainly depends on motion in sequences. Because most
actions in MSR-Action3D are fast (e.g., “high arm wave”),
using smaller temporal kernel size facilitates capturing fast

PSTNet MeteorNet ground truth input

PSTNet++

Fig. 6. Visualization of semantic segmentation examples from Synthia
4D. All of the methods achieve satisfactory results. However, our
PSTNet++ performs better than MeteorNet and PSTNet on some small
areas.

motion, and long-range temporal dependencies will be cap-
tured in high-level layers. Since we aim to present generic
point-based operations, we do not tune the kernel size for
each action but use the same size.

4.4.6 Spatial Radius

The spatial radius controls the range of the spatial structure
to be modeled, and thus is import for extracting the spa-
tially-local correlation. As shown in Fig. 4, using too small
spatial radius cannot capture sufficient structure informa-
tion while using large spatial radius will decrease the dis-
criminativeness of local structure for temporal modeling.

5 CONCLUSION

In this paper, we propose an effective 3D point spatio-tem-
poral operation (PSTOp) to learn informative representa-
tions from point cloud videos. Considering 3D points are
spatially irregular and temporally ordered, we decouple the
feature extraction in two successive steps, i.e., a spatial oper-
ation and a temporal operation, with the help of our newly
introduced point tubes. Then, we develop a point spatio-
temporal transposed operation (PSTTransOp) for point-
level dense prediction tasks. We also demonstrate that by
incorporating the proposed operations into deep network,
dubbed PSTNet++, our method is competent to address var-
ious point-based tasks. Extensive experiments demonstrate
that our PSTNet++ significantly improves the recognition
and segmentation performance by effectively modeling
point cloud videos. Moreover, we theoretically prove that
our PSTNet++ is able to effectively model point cloud
videos.
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