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Abstract—Existing face hallucinationmethods based on convolutional neural networks (CNNs) have achieved impressive performance

on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are

captured in non-uniform illumination conditions. This paper proposes aRecursive Copy and PasteGenerative Adversarial Network

(Re-CPGAN) to recover authentic high-resolution (HR) face images while compensating for non-uniform illumination. To this end, we

develop two key components in our Re-CPGAN: internal and recursive external Copy and Paste networks (CPnets). Our internal CPnet

exploits facial self-similarity information residing in the input image to enhance facial details; while our recursive external CPnet leverages

an external guided face for illumination compensation. Specifically, our recursive external CPnet stacksmultiple external Copy and Paste

(EX-CP) units in a compactmodel to learn normal illumination and enhance facial details recursively. By doing so, our method offsets

illumination and upsamples facial details progressively in a coarse-to-fine fashion, thus alleviating the ambiguity of correspondences

between LR inputs and external guided inputs. Furthermore, a new illumination compensation loss is developed to capture illumination

from the external guided face image effectively. Extensive experiments demonstrate that our method achieves authentic HR face images

in a uniform illumination conditionwith a 16�magnification factor and outperforms state-of-the-art methods qualitatively and quantitatively.

Index Terms—Face hallucination, super-resolution, illumination normalization, generative adversarial network

Ç

1 INTRODUCTION

FACE hallucination, also known as face super-resolution
(FSR), refers to generating high-resolution (HR) face

images from their corresponding low-resolution (LR)
inputs, has received significant attention in recent years.
Existing face hallucination methods mainly focus on super-
resolving face images with uniform illumination. However,
due to the non-ideal imaging environments, the captured
face images may be tiny and shaded. Hallucinating such
shaded LR faces requires either face illumination normaliza-
tion followed by face hallucination techniques, or face hallu-
cination methods followed by illumination normalization.

Note that in order to super-resolve shaded LR faces, existing
FSR methods often rely on the availability of illumination-
specific exemplar datasets. Nonetheless, both of these
options are naturally very challenging.

The state-of-the-art face illumination processingmethods [1],
[2], [3] usually fit the face region to a pre-aligned face template
based on facial landmarks and then normalize illumination.
However, these methods are unsuitable for tiny faces because
accurate facial landmark detection requires the input image
with a sufficient resolution. This leads to suboptimal illumina-
tion normalization results (see Fig. 2d). Moreover, the produced
errors cannot be eliminatedby the subsequent face hallucination
process but are exaggerated (see Fig. 2e). Similarly, as shown
Fig. 2f, for shaded LR faces, applying illumination normaliza-
tion followed by face hallucination also produces degraded
resultswith obvious distortions and severe artifacts.

In this paper, we aim to hallucinate LR inputs under non-
uniform illumination (NI-LR)1 while achieving HR faces
under uniform illumination (UI-HR)2 in a unified frame-
work. In particular, these two tasks (i.e., face hallucination
and illumination compensation) will be addressed simulta-
neously and mutually facilitate each other. To this end, we
propose a Recursive Copy and Paste Generative Adversar-
ial Network (Re-CPGAN), which adopts the internal and
external guided illumination information to normalize the
input NI-LR face progressively during the upsampling pro-
cedure (as illustrated in Fig. 1).

Re-CPGAN. It consists of two components: a copy and
paste based transformative upsampling network (CPUN)
which embodies an internal CPnet, a recursive external
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1 NI-LR faces: low-resolution faces under non-uniform illumination.
2 UI-HR faces: high-resolution faces under uniform illumination.
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CPnet and a face reconstruction net, as well as a discrimina-
tive network. We first design an internal CPnet to initially
offset non-uniform illumination features and roughly
enhance facial details by exploiting facial self-similarity
information within an input NI-LR face. Then, we propose a
recursive external CPnet to learn illumination patterns from
a guided UI-HR face and upsample facial features. Our
recursive external CPnet stacks External Copy and Paste
(EX-CP) units for normalizing illumination and enhancing
facial details alternatingly, and employs a global skip con-
nection to pass low-frequency facial information to the
output while mitigating the difficulty of training deep net-
works. Specifically, we employ recursive learning for the
Ex-CP unit to make our model deep yet compact. In doing
so, we normalize illumination and recover diverse charac-
teristics of NI-LR inputs progressively. Afterwards, we
transform the refined feature maps (multi-channel) back to
the original image space (RGB-channel) via the face recon-
struction net to generate the UI-HR face. Inspired by previ-
ous works [6], [7], [8], we employ the discriminative
network to enforce the UI-HR output to resemble real
human faces. Finally, we propose an illumination compen-
sation loss to capture the normal illumination pattern and
transfer the normal illumination to the inputs. As shown in
Fig. 2h, our hallucinated UI-HR face is realistic, and resem-
bles the ground-truth with normal illumination.

Data Augmentation. Training a deep neural network
requires very large datasets to prevent over-fitting. In our
case, the existing public face datasets [9], [10] do not pro-
vide a sufficient number of NI=UI face pairs. For the train-
ing purpose, we propose a tailor-made Random Adaptive
Instance Normalization (RaIN) model as our “illumination
rendering engine”. The proposed RaIN model adopts an
encoder-decoder architecture and employs an Adaptive
Instance Normalization (AdaIN) [11] layer and a Varia-
tional Auto-Encoder (VAE) [12] in the latent space. Specifi-
cally, we exploit AdaIN to normalize the features of a UI
face image and then enforce the features to share the same
channel-wise mean and standard deviation as those of a
selected NI face image features. The VAE is inserted before
the AdaIN layer to produce an unlimited number of plau-
sible hypotheses for the feature statistics of the NI face
image. Our RaIN model is able to transfer various illumi-
nation conditions to face images and thus generates suffi-
cient NI face samples from UI-HR inputs. As a result, we
construct a large corpus of NI=UI face pairs for training
our Re-CPGAN.

Extension. In our previous work [5], we propose CPGAN
which directly stacks multiple external CPnets and decon-
volutional layers to offset non-uniform illumination and
upsample facial details alternatingly. However, adding
more convolutional layers introduces more parameters, and
handicaps the model deployment in practice. As a notable
extension of our previous work, we inherit the copy and
paste strategy and design a more advanced network archi-
tecture from the perspective of recursive learning, thereby
constructing a deep yet compact model with better hall-
ucination performance. The major improvements lie in
four-folds: (1) We design a recursive external CPnet to learn
illumination and upsample facial details to improve the
capability of our face hallucination network while achieving
a deep yet compact model Re-CPGAN. (2) We provide anal-
yses on our model with increasing recursions in terms of
qualitative and quantitative performance as well as land-
mark estimation accuracy. (3) We further adopt three
evaluation metrics, i.e., face recognition rate, expression
classification rate and facial landmark localization error, to
evaluate our face hallucination performance and demon-
strate the advantage of Re-CPGAN. (4) We evaluate our

Fig. 1. Motivation of Re-CPGAN. Internal and recursive external CPnets
are introduced to mimic the Clone Stamp Tool. Internal CPnet copies
well-illuminated facial details and then paste them onto shadow regions.
Recursive external CPnet further retouches the face using an external
guided face from the UI-HR face database during the upsampling pro-
cess to compensate for uneven illumination in the final HR face.

Fig. 2. Comparison of our proposed Re-CPGAN with the state-of-the-art methods (16� 16, 8�). ((16� 16, 8�): 16� 16 represents the resolution of
the original input NI-LR face; 8� represents the magnification factor). (a) Interpolated unaligned NI-LR image. (b) Guided UI-HR image (128� 128
pixels). (c) Ground-truth UI-HR image (128� 128 pixels, not available in training). (d) Illumination normalization result of (a) by applying [3]. (e) Face
hallucination result of (d) by applying [4]. (f) Result of face hallucination followed by illumination normalization by applying [4] and then [3] to the NI-
LR face. (g) Result of our previous method CPGAN [5]. (h) Result of Re-CPGAN (128� 128 pixels).
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model on more challenging situations including the inputs
under extremely low resolutions, large poses and complex
expressions, and confirm that our Re-CPGAN outperforms
the state-of-the-art in all cases.

The contributions of our work are summarized as
follows:

� We present a novel framework, dubbed Re-CPGAN,
to address face hallucination and illumination com-
pensation together in an end-to-end manner. Re-
CPGAN is optimized by not only the conventional
face hallucination losses but also a newly introduced
illumination compensation loss.

� We design an internal CPnet to normalize illumina-
tion and enhance facial details coarsely, aiding sub-
sequent illumination compensation and upsampling
processes.

� We present a recursive external CPnet to learn illu-
mination features from an external guided face. In
this fashion, we are able to learn illumination explic-
itly rather than over-fitting to a certain illumination
condition. With the recursive learning, the perfor-
mance of our model can be significantly improved
without introducing new parameters for additional
layers.

� A tailor-made data augmentation model, namely
RaIN, is proposed to generate sufficient NI=UI face
pairs. Our constructed NI=UI face pair database will
be publicly available for reproducibility.

� Our experiments demonstrate that Re-CPGAN is
able to normalize and super-resolve (by a large
upscaling factor of 16�) NI-LR face images (e.g., 8�
8 pixels) undergoing large poses (e.g., 90o) and com-
plex facial expressions (e.g., “disgust”, “surprise”).
Moreover, our Re-CPGAN is capable of providing
superior hallucinated face images for downstream
tasks, i.e., face recognition and expression classifica-
tion, in comparison to the state-of-the-art.

2 RELATED WORK

2.1 Face Hallucination

Face hallucination methods aim at establishing the intensity
relationships between input LR and output HR face images.
The prior works can be categorized into three mainstreams:
holistic-based, part-based, and deep learning-basedmethods.

The basic principle of holistic-based techniques is to
upsample a whole LR face by a global face model. Wang
et al. [13] formulate a linear mapping between LR and HR
images to achieve face super-resolution based on an Eigen-
transformation of LR faces. Liu et al. [14] incorporate a
bilateral filtering to mitigate the ghosting artifacts. Kolouri
and Rohde [15] morph HR faces from aligned LR ones
based on optimal transport and subspace learning. How-
ever, they require LR inputs to be precisely aligned and
reference HR faces to exhibit similar canonical poses and
natural expressions.

To address pose and expression variations, part-based
methods are proposed to make use of exemplar facial
patches to upsample local facial regions instead of impos-
ing global constraints. The approaches [16], [17], [18]

super-resolve local LR patches based on a weighted sum of
exemplar facial patches in reference HR database. Liu et al.
[19] develops a locality-constrained bi-layer network to
jointly super-resolve LR faces as well as eliminate noise
and outliers. Moreover, SIFT flow [20] and facial land-
marks [21] are introduced to locate facial components for
further super-resolution. Since these techniques need to
localize facial components in LR inputs preciously, they
may fail to process very LR faces.

Recently, deep learning based face hallucination meth-
ods have been actively explored and achieved superior per-
formance compared to traditional methods. Yu et al. [22]
exploit deconvolutional layers to upsample LR faces and
employ unsharp filtering to enhance image sharpness [23].
Later, Yu et al. [24], [25] develop GAN-based models to hal-
lucinate very LR face images. Huang et al. [26] incorporate
the wavelet coefficients into deep convolutional networks to
super-resolve LR inputs with multiple upscaling factors.
Cao et al. [27] design an attention-aware mechanism and a
local enhancement network to alternately enhance facial
regions in super-resolution. Xu et al. [28] jointly super-
resolve and deblur face and text images with a multi-class
adversarial loss. Dahl et al. [29] present an autoregressive
Pixel-RNN [30] to hallucinate pre-aligned LR faces. Yu et al.
[6] present a multiscale transformative discriminative net-
work to hallucinate unaligned input LR face images with
different resolutions. Menon et al. [31] present a Photo
Upsampling via Latent Space Exploration (PULSE) algo-
rithm to generate high-quality frontal face images at large
resolutions. Zhang et al. [32] develop a two-branch super-
resolution network to compensate and upsample ill-illumi-
nated LR face images. However, these methods focus on
super-resolving near-frontal LR faces. Consequently, they
are restricted to the inputs under small pose variations.

Several face hallucination techniques have been pro-
posed to super-resolve LR faces under large pose variations
by introducing facial prior information [4], [33], [34]. Chen
et al. [33] incorporate facial geometry priors into their hallu-
cination model to super-resolve LR faces. Bulat et al. [34]
propose a method to learn not only the mappings between
LR and HR faces but also the real-world degeneration pro-
cess. Yu et al. [4] exploit the facial component information
from the intermediate upsampled features to encourage the
upsampling stream to produce photo-realistic HR faces.
However, these approaches only hallucinate tiny face
images with normal illumination.

2.2 Face Illumination Compensation

Face illumination compensation methods focus on compen-
sating for uneven illumination in face images. Conventional
and emerging researches on face illumination compensation
can be grouped into two classes: illumination normalization
and illumination synthesis methods.

Illumination normalization methods usually obtain the
normal illumination face image by directly manipulating or
modifying the input face. Shashua et al. [35] propose a quo-
tient image technique for face illumination normalization,
where an input face image is normalized by multiplying it
with the ratio of a reference uniform illumination face and
the input one. Quotient images have also been used to
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transfer subtle shading effects caused by expression varia-
tions [36] and match illumination for face swapping [37].
[38] presents a novel image processing chain to calculate
illumination-insensitive features. Chen et al. [1] design
detailed illumination layers based on edge-preserving filters
to modify non-uniform illumination in input images. How-
ever, these methods require an input face to be strict pre-
aligned, which is impractical in serve illumination and low-
resolution cases.

Recently, image-to-image translation algorithms have
been proposed to tackle the face illumination transfer prob-
lem including illumination normalization. Tran et al. [39]
propose a GAN-based model to learn disentangled repre-
sentations of input faces, and then generate label-assisted
face images. Yang et al. [40] design an IL-GAN model to
produce face images with desired illumination styles by
injecting illumination codes. Zhu et al. [41] propose a cycle
consistent network to render a content image to new images
with different styles. However, these multi-domain transfer
techniques require explicit domain labels. FUNIT [42] is
proposed to generate the target domain images with only a
few examples. HiDT [43] is a recent advanced image-to-
image translation method that does not rely on domain
labels during either training or inference. It is able to re-ren-
der an image with different illumination conditions in a
continuous space. However, without imposing facial priors
to their framework, these methods would reconstruct infe-
rior facial details, especially when the resolutions of input
images are low.

Illumination synthesis methods infer intrinsic face prop-
erties, material properties and illumination separately based
on the physical lighting model [44], [45], [46]. Blanz et al.
[47] first propose the 3D Morphable Model (3DMM) to esti-
mate and synthesize lighting conditions by a linear combi-
nation of prototype models. Then, Wang et al. [48] design a
3D spherical harmonic basis morphable model (SHBMM),
fusing 3DMM and spherical harmonic illumination repre-
sentation. However, since existing 3DMMs are always built
with face images captured in controlled environments, these
3DMM-based methods only work well in under-controlled
scenarios. Then, Barron et al. [49] define a simple optimiza-
tion problem in which they recover the reasonable intrinsic
scene properties including shape, reflectance, and illumina-
tion under the guidance of image priors. [50] enforces illu-
mination representations to be aware of face geometry by
employing a generic three-dimensional morphable face
model, where the spherical harmonics coefficients and the
standard color histogram matching are used to model the
illumination. Saito et al. [51] synthesize a photo-realistic
albedo from a partial albedo based on traditional methods.
Wang et al. [46] decompose illumination into different chan-
nels, including specular and shadows, and exploit a net-
work to learn such decomposition. However, those
methods often resort to graphic rendering and thus are very
time-consuming to obtain a large number of images.
Recently, some deep learning approaches are proposed to
disentangle real-life face images. Zhou et al. [2] present a
Label Denoising Adversarial Network (LDAN) for lighting
regression on real face images. Shu et al. [52] propose a
physically grounded rendering-based disentangling net-
work to render in-the-wild faces with real and arbitrary

backgrounds. SfSNet [3] is inspired by a physical rendering
model and disentangles normal and albedo into separate
subspaces.

2.3 Recursive Neural Network

Recursive neural network has been proposed to address
various tasks, such as semantic segmentation [53], object
classification [54], and image super-resolution [55] and
image deraining [56].

Socher et al. [57] propose a model based on a combination
of convolutional and recursive neural networks to learn fea-
tures from RGB-D data effectively for 3D object classifica-
tion. Liang et al. [54] propose a recurrent CNN for object
recognition by incorporating recurrent connections into
each convolutional layer of the feed-forward CNN. Kim
et al. [58] present a very deep recursive convolutional net-
work using a chain structure, namely DRCN, for image
super-resolution. To mitigate the training difficulty, DRCN
uses recursive-supervision and skip-connections to promote
gradient back-propagation, and adopts an ensemble strat-
egy to further improve the model performance. Similarly,
Ying et al. [55] design a recursive block consisting of several
residual units and construct a very deep CNN model with
the recursive blocks. Benefiting from the recursive fashion,
models can achieve better performance while maintaining
the parameter sizes.

3 HALLUCINATION WITH “COPY” AND “PASTE”

To reduce the ambiguous mapping from NI-LR to UI-HR
faces caused by non-uniform illumination, we present an
Re-CPGAN framework that takes a NI-LR face as the input
and an external HR face with normal illumination as a guid-
ance to hallucinate a UI-HR one. Our Re-CPGAN consists of
a copy and paste upsampling network and a discriminative
network. The copy and paste upsampling network introdu-
ces external guided illumination information into the hallu-
cination process to normalize the lighting conditions of
input NI-LR faces. The discriminative network is used to
enforce the generated UI-HR faces to lie on the manifold of
real face images.

3.1 Copy and Paste Upsampling Network (CPUN)

Our CPUN is composed of three parts: an internal CPnet, a
recursive external CPnet and a face reconstruction net, as
shown in Fig. 3. First, we design the internal CPnet to
enhance facial details and normalize illumination coarsely
for an input NI-LR face by exploiting facial self-similarity
information. Meanwhile, we employ a convolutional layer
to extract features of a guided UI-HR face. Note that, our
guided face is different from the ground-truth of the NI-LR
input. Second, we propose a recursive external CPnet that
resorts to the external guided features for further illumina-
tion compensation during the upsampling process. Finally,
we use the face reconstruction net to transform the refined
features to the RGB image.

3.1.1 Internal CPnet

Our internal CPnet consists of an input convolutional layer,
an internal copy block, a paste block and a skip-connection
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(see Fig. 4a). Since an input NI-LR face often contains few
facial details, we design the internal copy block (see
Fig. 4b), which adopts a Channel-wise Attention (CA) mod-
ule [59] and a copy block, to enhance high-frequency facial
details and normalize illumination coarsely. The CA mod-
ule [59] is employed to model inter-dependencies among
channels, and thus enhances channel-wise high-frequency
features. Meanwhile, the copy block (see Fig. 6a) is designed
to capture spatial dependencies between any two positions
within the input feature maps, and then enhances spatial-
wise high-frequency features. Note that, our copy block
here takes the output features of the CA module as both
content features (FC) and guided features (FG), as shown in
Fig. 6a. Then, the high-frequency facial details can be effec-
tively recovered by the internal copy block.

To demonstrate the effect of our proposed internal copy
block, we visualize the changes between the input and out-
put feature maps (see Fig. 4b). Since the input NI-LR face
does not contain discriminative facial features, the input
features FLR mainly reside in the low-frequency band (in
blue color). After our internal copy block, the output fea-
tures FEN spread in the direction of high-frequency band
(in red color), and span the whole band. Therefore, we use
the name “internal copy block” because its functionality
resembles an operation that “copies” the high-frequency
features to the low-frequency parts.

As shown in Fig. 7c, the Re-CPGAN variant without the
internal CPnet produces inferior results. This also indicates
that our internal CPnet initially refines the input NI-LR face
at the feature level and thus benefits subsequent face hallu-
cination and illumination compensation processes.

3.1.2 Recursive External CPnet

Our recursive external CPnet is composed of two parts: cas-
caded Ex-CP units that offset non-uniform illumination and
enhance facial details recursively, and a global skip connec-
tion that helps gradient back-propagation during training
(see Fig. 5a).

Fig. 3. The pipeline of the copy and paste upsampling network (CPUN) in our proposed Re-CPGAN.

Fig. 4. The architecture of the internal CPnet. Copy block here treats the
output features of CA module as the both content features and guided fea-
tures. Paste block here represents the additive operation functionally.
Here,we conduct the channel-wise average operation on the featuremaps.

Fig. 5. The architecture of the recursive external CPnet. Here, STN, RB
and HEM represent the spatial transformer network, the residual block,
and the heatmap estimation module, respectively.
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The Ex-CP unit consists of a spatial transformer
network (STN) [60], a residual block, a copy block, a
paste block, a heatmap estimation module (HEM) and an
output convolutional layer (see Fig. 5b). Since the input
NI-LR faces may undergo misalignment, such as in-plane
rotations, translations and scale changes, STN is
employed to compensate for misalignment [8], [61], as
shown in the cyan blocks in Fig. 5b. Meanwhile, inspired
by SRGAN [62], the residual block is adopted to recover
photo-realistic textures from LR features. Then, we
design the copy block (see Fig. 6a) to explicitly learn the
illumination pattern from the external guided UI-HR
face. Afterwards, inspired by [63], we employ the
stacked hourglass networks [64] as our heatmap estima-
tion module. It estimates facial structure priors, i.e.,
facial landmark heatmaps, from intermediate facial fea-
tures to preserve facial structure. Finally, we concatenate
the estimated priors with the refined facial features. In
this fashion, we exploit not only low-level information
(i.e., intensity similarity) but also middle-level informa-
tion (i.e., facial structure) to achieve accurate hallucina-
tion results. Therefore, the Ex-CP unit streamlines the
process of alignment, illumination normalization, struc-
ture estimation and super-resolution on NI-LR faces.

Furthermore, we apply a recursive mechanism to the Ex-
CP unit to increase the depth of our model without intro-
ducing extra parameters. In this way, we can progressively
adjust alignment, normalize illumination and recover facial
characteristics for the NI-LR inputs. This distinctive design
also alleviates the ambiguity of correspondences between
NI-LR inputs and external UI-HR ones. As seen in Figs. 7k
and 7l), our hallucinated faces become more visually
appealing as the recursion depth increases.

3.1.3 Copy Block

Fig. 6a depicts the “copy” procedure of our copy block. The
guided features F 0

G and content features F 0
C are extracted

from the external guided UI-HR image and the input NI-LR
image respectively. First, the guided features FG and con-
tent features FC are normalized and transformed into a
common feature space by applying two mappings c and u

for feature similarity measurement. Then, the “copied” fea-
tures FCG can be formulated as a weighted sum of the
guided features FG that are similar to the content features
FC at different positions. The ith output response is
expressed as

FCGi ¼ 1

MðF Þ
X
8j

exp WWT
u FCi

� �
FCi

� �T
FGjFGjWWc

� �
FGjFGjWW z

n o
;

(1)
whereMðF Þ ¼ P

8j exp WWT
u FCi

� �
FCi

� �T
FGjFGjWWc

� �
is the sum of all

output responses over all positions. F is a transform on F
by applying the mean-variance channel-wise normalization.
Here, the embedded transformations W u, Wc and W z are
learnt during training.

Although our copy block shares a similar network archi-
tecture to the existing non-local module [65], it differs from
non-local module since our copy block focuses on address-
ing the fusion of the guided and content features. As a con-
sequence, the copy block can integrate the illumination of
guided features into content features as well as enhance
high-frequency facial details (see F 16

CG in Fig. 6a). Further-
more, as shown in Fig. 6b, the facial details in the generated
“copied” features FCG become much clearer as recursions
increase. This indicates that the recursive structure helps
the “copy” operation in a coarse-to-fine manner and enhan-
ces facial details progressively.

3.2 Discriminative Network

Inspired by [6], [7], we employ a discriminative network to
force the generated UI-HR faces to lie on the same manifold
as real UI-HR ones. Our discriminative network consists of
convolutional layers, max-pooling layers, dropout layers,
and fully-connected layers. It is designed to determine
whether an image is sampled from real face images or the
hallucinated ones. As shown in Figs. 7h and 7l, it can
be clearly seen that the results of Re-CPGAN (see Fig. 7l)
are more photo-realistic.

3.3 Training Procedure

We construct NI-LR=UI-HR face pairs {li, hi} for our training
purpose, where hi represents the aligned UI-HR face images
(only eyes are aligned), and li represents the synthesized
unaligned NI-LR face images. More details are provided in
Section 4. Note that, our guided faces gi are randomly
selected from hi and different from the ground-truth of li.

Our Re-CPGAN is trained in an end-to-end fashion. To
compensate for the uneven illumination in output images,
we develop an illumination compensation loss Lic. To mini-
mize discrepancies between output images and their
ground-truth counterparts, we employ two losses. The first
one is an intensity similarity loss Lmse to maintain the pixel-
wise intensity similarity and the second one is an identity
similarity loss Lid to enforce the feature-wise similarity. To

Fig. 6. The diagram of the copy block. The “copied” features FN
CG repre-

sent the output features of the copy block in the Re-CPGAN variant with
N EX-CP units. Here, we conduct the channel-wise average operation
on the feature maps.
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preserve the structural integrity of generated faces, we
introduce the structure similarity loss Lh [7]. To enforce the
output faces to resemble real ones, an adversarial loss
Ladv [66] is also employed.

Illumination Compensation Loss. Inspired by the style loss
in [11], we propose the illumination compensation loss Lic.
Lic constrains the illumination characteristics of the recon-
structed UI-HR face to be close to those of the guided UI-
HR face in the latent subspace

Lic ¼ E ĥi;gið Þ�pðĥ;gÞ

(XL
j¼1

m ’jðĥiÞ
� �

� m ’jðgiÞ
� ���� ���

2

þ
XL
j¼1

s ’jðĥiÞ
� �

� s ’jðgiÞ
� ���� ���

2

)
;

(2)

where gi represents the guided UI-HR image, ĥi represents
the generated UI-HR image, and pðĥ; gÞ represents their
joint distribution. ’jð�Þ denote the outputs of relu1_1,
relu2_1, relu3_1 and relu4_1 layers in a pre-trained VGG-19
model [67]. Here, m and s are the mean and variance of
each feature channel. Fig. 7e shows that without employing
Lic, the upsampled face suffers from severe artifacts. This
demonstrates that our Lic significantly mitigates the illumi-
nation ambiguity in the upsampled results.

Intensity Similarity Loss. To enforce a generated UI-HR
image ĥi to be similar to its ground-truth image hi in terms
of intensities, an intensity similarity loss Lmse is employed

Lmse ¼ E ĥi;hið Þ�pðĥ;hÞ ĥi � hi

�� ��2
F

¼ E li;hið Þ�pðl;hÞ Ct lið Þ � hik k2F ; (3)

where t and C are the parameters and the output of CPUN.
li represents the input NI-LR face image. pðĥ; hÞ represents
the joint distribution of the generated UI-HR images ĥi and
the corresponding ground-truths hi. Similarly, pðl; hÞ repre-
sents the joint distribution of the input NI-LR images li and
the corresponding ground-truths hi.

As mention in [22], [62], only employing the intensity
similarity loss Lmse in training often leads to overly
smoothed results and the network may fail to generate
high-frequency facial features (see Fig. 7f). Therefore, we
incorporate an identity similarity loss to enhance our hallu-
cinated results.

Identity Similarity Loss. Identity preservation is one of the
most important goals in face hallucination [68]. Therefore,
we adopt the identity similarity loss Lid to minimize the
euclidean distance between the high-level features of a hal-
lucinated face and its ground-truth, thus endowing our Re-
CPGAN with the identity preserving ability. The identity
similarity loss Lid is expressed as

Lid ¼ E ĥi;hið Þ�pðĥ;hÞ F ĥi

� �
�F hið Þ

��� ���2
F

¼ E li;hið Þ�pðl;hÞ F Ct lið Þð Þ �F hið Þk k2F ;
(4)

where Fð�Þ represents a feature representation of an input
image extracted from the average pooling layer of the pre-
trained ArcFace model [69]. As shown in Fig. 7g, employing
Lid indeed improves the generated results while producing
more authentic facial details.

Structure Similarity Loss. To facilitate face alignment as
well as constrain the structural consistency between the
generated UI-HR image and the ground-truth one, the
structure similarity loss Lh [7] is employed in training our
heatmap estimation module, written as

Lh ¼ E li;hið Þ�pðl;hÞ
1

P

XP
k¼1

Hk fið Þ �Hk hið Þ�� ��2
2

¼ E li;hið Þ�pðl;hÞ
1

P

XP
k¼1

Hk ~Ct lið Þ� ��Hk hið Þ�� ��2
2
;

(5)

where Hk fið Þ represents the kth predicted facial landmark
heatmap estimated from the intermediate facial features fi
by a stacked hourglass module [64]. Hk hið Þ denotes the kth
facial landmark heatmap generated by FAN [70] on the
ground-truth image hi. Here, we use 68 point facial land-
marks to produce the ground-truth heatmaps.

Adversarial Loss. Aiming at generating photo-realistic
results, we infuse the discriminative information into our
CPUN by adopting a discriminative network. Our goal is to
make the discriminative network fail to distinguish halluci-
nated faces from ground-truth ones. The objective function
LD for the discriminative network is defined as follows:

LD ¼ �E ĥi;hið Þ�pðĥ;hÞ logDd hið Þ þ log 1�Dd ĥi

� �� �h i
;

(6)

Fig. 7. Impacts of different components and losses on face super-resolu-
tion (16� 16, 8�). (a) Interpolated unaligned NI-LR image. (b) Ground-
truth UI-HR image (128� 128 pixels). (c) Result without using the inter-
nal CPnet but a simple input convolutional layer instead. (d) Result with-
out using the recursive external CPnet. (e) Result of Re-CPGAN without
adopting Lic. Note that specular appears in the left side of the forehead.
(f) Result of Re-CPGAN trained by Lmse. (g) Result of Re-CPGAN
trained by Lmse and Lid. (h) Result of CPUN (Re-CPGAN without
employing Ladv). (i) Result without using an external guided face. Con-
tent features (FC ) replace guided features (FG) in the copy block. (j)
Result without data augmentation. (k) Result of Re-CPGAN with 8 Ex-
CP units. (l) Result of Re-CPGAN. Note that, in this experiment 16 Ex-
CP units are used for all the cases except (k).
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where D and d represent the discriminative network and its
parameters. During training, we update the parameters of
the discriminative network by minimizing the loss LD.

On the contrary, our CPUN is designed to produce realis-
tic face images, which would be classified as real faces by
the discriminative network. Thus, the corresponding adver-
sarial loss Ladv is represented as

Ladv ¼ �Eĥi�pðĥÞlog ðDdðĥiÞÞ
¼ �Eli�pðlÞlog Dd Ct lið Þð Þð Þ:

(7)

To optimize the CPUN, we minimize the loss Ladv.
Total Loss Function. The objective function to hallucinate

UI-HR face ĥ is expressed as

LG ¼ Lmse þ aLid þ bLh þ Lic þ cLadv: (8)

Since we intend to hallucinate UI-HR faces rather than
generating random faces, we put lower weights on Lid, Lh

and Ladv. Therefore, a;b and c in Eq. (8) are set to 0.01.

4 DATA AUGMENTATION

4.1 Illumination Rendering Engine: RaIN

Training a deep neural network often requires a large num-
ber of data to prevent over-fitting. However, existing public
face datasets [9], [10] do not provide a sufficient number of
NI=UI face pairs. To achieve enough training samples and
improve the generalization ability of our network, we pro-
pose a tailor-made Random Adaptive Instance Normaliza-
tion (RaIN) model as an illumination rendering engine for
data augmentation.

RaIN adopts an encoder-decoder architecture. The
encoder is a pre-trained VGG-19 network [67] and the first
few layers (up to relu4_1) in the encoder are fixed during
training. Moreover, RaIN employs an Adaptive Instance
Normalization [11] layer and a Variational Auto-
Encoder [12] in the latent space. To be specific, AdaIN nor-
malizes the features of a UI face image and then enforces
the features to share the same channel-wise mean and stan-
dard deviation as those of a selected NI face image features.
The VAE, as shown in Fig. 8, is inserted before the AdaIN
layer to produce a large number of plausible hypotheses for
the feature statistics of the NI face image. Our RaIN model
transfers illumination styles of face images in real-time and
generates sufficient NI face samples from UI inputs (Fig. 8).

Fig. 8 illustrates that RaIN learns to render NI face
images. First, given an input content image Ic (UI face)
and a style image Is (NI face), the VGG encoder encodes
them into a common latent space, producing fc and fs.
Then, the VAE first encodes mðfsÞ � sðfsÞ (� denotes
“concatenation”) to a Gaussian distribution, and then
decodes a sampled latent code z from the distribution to
reconstruct of the style feature statistics. Afterwards,
AdaIN adaptively normalizes fc as follows:

t ¼ AdaINðfc; fsÞ ¼ gsðfsÞ fc � mðfcÞ
sðfcÞ

� �
þ gmðfsÞ; (9)

where m :ð Þ and s :ð Þ denote the channel-wise mean and stan-
dard deviation. We simply scale the normalized content fea-
tures fc with gsðfsÞ, and shift it with gmðfsÞ.

Finally, a randomly initialized decoderW is trained tomap
t back to the image space, generating aNI face image Ics

Ics ¼ WðtÞ: (10)

4.2 Training Settings

We first train our RaIN model using the MS-COCO3 [71]
and WikiArt4 [72] databases as content and style images,
respectively. Each database contains approximately 80,000
images. Then, we fine-tune the trained RaIN model on the
Multi-PIE database [9]. Similar to [11], we employ a content
loss and a style loss [11] to train the decoder D, and employ
a MSE loss and a Kullback-Leibler divergence loss [12] to
train the VAE.

4.3 Data Generation

We employ a pre-trained RaIN model as our “illumination
rendering engine” and perform data augmentation. As
shown in Fig. 9, we feed the UI face along with a random
noise into the trained RaIN model. As a result, we can gen-
erate sufficient NI face images with random illumination
conditions from an input UI one (see Fig. 10). We resize the
synthesized NI face samples to 128� 128 pixels and then
apply 2D transforms, including rotations, translations, scal-
ing and downsampling, to generate the NI-LR images.
Meanwhile, we resize the corresponding UI ones to 128�
128 pixels, and use them as our UI-HR images. Since

Fig. 8. The framework of our proposed RaIN model.

Fig. 9. The testing stage of our RaIN model. RAIN enables us to gener-
ate sufficient NI faces with random illumination conditions from some
sampled vectors z.

3 http://cocodataset.org/home
4 https://www.wikiart.org
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illumination rendering would lead to hue shifts, the color
tone of the generated samples is slightly different from the
face images in Multi-PIE. However, when we downsample
the generated NI faces to form the NI-LR ones, this color jit-
tering can be largely reduced. As a result, we construct a
large corpus of NI-LR=UI-HR face pairs. We will release the
synthesized face pairs for academic and commercial
applications.

In our work, the constructed NI-LR=UI-HR face pairs by
RaIN are used to augment our training set. According to the
comparison experiments, with data augmentation, our Re-
CPGAN is able to hallucinate NI-LR faces even better (see
Figs. 7j and 7l).

5 EXPERIMENTS

5.1 Databases

Re-CPGAN is trained and tested on the Multi-PIE data-
base [9] (indoor) and the Celebrity Face Attribute (CelebA)
database [10] (in-the-wild).

The Multi-PIE database [9] is a large face database with
750K+ images of 337 subjects under various poses, illumina-
tion conditions and expressions. We choose 16K NI=UI face
pairs of all the subjects spanning across various illumination
conditions, poses (0o, �15	, �30	, �45	, �60	, �75	, �90	)
and expressions (“smile”, “disgust”, “squint”, “scream”,
“surprise”, and “neutral”), for our experiments.

The CelebA database [10] only provides in-the-wild faces
rather than NI=UI face pairs. Therefore, for the training pur-
pose, we opt to synthesize NI faces for the UI ones. We first
randomly select 18K cropped UI-HR faces from CelebA,
resize them to 128� 128 pixels, and use them as our
ground-truth images. Then, similar to [73], the Adobe Pho-
toshop Lightroom is adopted to render illumination on
these UI-HR faces. Afterwards, we generate the unaligned
NI-LR faces (8� 8 / 16� 16 pixels) by transforming and
downsampling the rendered ones. As a result, we generate
18K NI-LR=UI-HR CelebA face pairs.

For each database, we choose 80 percent of the face pairs
for training and 20 percent of the face pairs for testing,
respectively. In this way, the training and testing sets do not
overlap. Specifically, RaIN is adopted to perform data aug-
mentation on the training set 10 times. During the training
and testing processes, the external guided UI-HR images
are randomly selected from the UI-HR ones. Our large-scale
NI and UI face pair dataset, and the code will be available
on https://github.com/SEU-yang.

5.2 Compared Methods

We conduct comparative experiments in the following four
scenarios:

� FH: face hallucination methods (SRGAN [62],
FSRnet [33], FHC [4]);

� IN+FH: illumination normalization techniques
(HiDT [43]) followed by face hallucination methods
(SRGAN [62], FSRnet [33] or FHC [4]) (we first
upsample the NI-LR face images by bicubic interpo-
lation, then apply [43], and downsample the normal-
ized results for face hallucination);

� FH+IN: face hallucination methods (SRGAN [62],
FSRnet [33] or FHC [4]) followed by illumination
normalization techniques (SfSNet [3]);

� Joint FH+IN: CPGAN [5] and our Re-CPGAN with
16 Ex-CP units.

In the first fashion (FH), we hallucinate the NI-LR faces
by state-of-the-art face hallucination methods directly. In
the second fashion (IN+FH), we first normalize the NI-LR
faces by popular illumination normalization techniques,
and then hallucinate the normalized faces by state-of-the-art
face hallucination methods. In the third fashion (FH+IN),
we first hallucinate the NI-LR faces to achieve the NI-HR
ones, and then normalize the hallucinated results. In the
fourth fashion (Joint FH+IN), both CPGAN [5] and Re-
CPGAN jointly tackle face hallucination and illumination
normalization in a unified framework. As illustrated in
Fig. 11, to achieve the best visual performance among vari-
ous combinations, we employ HiDT [43] as the face illumi-
nation normalization technique in our IN+FH methods.
Meanwhile, we employ SfSNet [3] as the face illumination
normalization technique in our FH+IN methods.

For a fair comparison, we retrain these methods on our
training sets. Since SRGAN [62] and FSRnet [33] cannot
achieve face alignment during their upsampling procedure,
we train an STN [60] to align the input unaligned LR faces to
the upright position first. In contrast, FHC [4], CPGAN [5] and
ourRe-CPGAN super-resolve LR faceswhile aligning them.

5.3 Qualitative Comparisons With the SOTA

Fig. 12 illustrates the qualitative results of the compared
methods. The hallucinated results obtained by Re-CPGAN
are more photo-realistic and identity-preserving. As illus-
trated in Fig. 12b, the combination of bicubic interpolation
and face illumination compensation techniques [3] fails
to generate photo-realistic facial details. Since bicubic

Fig. 10. Illustration of the generated NI faces. (a) The UI face (original UI-HR face in Multi-PIE). (b) The generated NI face samples of (a). (c) The spa-
tially transformed and downsampled versions of (b).
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upsampling only interpolates new pixels from neighboring
pixels without generating new contents, the produced NI-
HR images lack details. Consequently, the illumination
compensation method fails to detect facial landmarks and

thus outputs faces with severe artifacts and distorted
contours.

SRGAN [62] is a generic super-resolution method and
employs the framework of GAN [66] to improve the visual
quality. Since non-uniform illumination induces more
ambiguous mappings between NI-LR and UI-HR face
images, SRGAN may not fully address those ambiguities.
Hence, the super-resolved faces by SRGAN suffer blurri-
ness and artifacts, as shown in Fig. 12c.

FSRnet [33] incorporates facial geometry priors into the
super-resolution of LR faces. FHC [4] exploits facial compo-
nent information to encourage the upsampling stream to
produce photo-realistic HR faces. These face hallucination
methods hallucinate high-frequency facial details with the
help of facial structure priors. However, uneven illumina-
tion of input faces would degenerate the performance of
facial prior estimation, and inaccurate facial priors may pro-
vide misleading information in face hallucination. As
shown in Figs. 12d and 12e, those methods produce blurry
face structures and deteriorated facial details.

As aforementioned, simply combining existing face hal-
lucination and illumination normalization methods cannot
address this challenging issue. This is verified by the results
of the strategy IN+FH (see Fig. 12f), where upsampled face
regions suffer severe distortions and ghosting artifacts. Sim-
ilarly, the strategy FH+IN also fails to recover authentic
facial details, as visible in Fig. 12g.

CPGAN [5] is the first attempt to jointly address face
hallucination and illumination compensation in a whole
framework. In this manner, two tasks facilitate each other

Fig. 11. Results of different combinations of face hallucination and illumi-
nation compensation methods. (a) Unaligned NI-LR inputs (16� 16 pix-
els). (b) Ground-truth UI-HR images (128� 128 pixels). (c) Bicubic
interpolation + SfSNet [3]. (d) Bicubic interpolation + HiDT [43]. (e)
SfSNet [3] + FHC [4]. (f) HiDT [43] + FHC [4]. (g) FHC [4]. (h) FHC [4] +
SfSNet [3]. (i) FHC [4] + HiDT [43].

Fig. 12. Comparison with state-of-the-art methods (16� 16, 8�). Columns: (a) Interpolated unaligned NI-LR inputs. (b) Bicubic interpolation + SfSNet [3].
(c) SRGAN [62]. (d) FSRnet [33]. (e) FHC [4]. (f) HiDT [43] + FHC [4]. (g) FHC [4] + SfSNet [3]. (h) CPGAN [5]. (i) Re-CPGAN. (j) Ground-truth UI-HR
images (128� 128 pixels). The first four columns: testing samples fromMulti-PIE. The last four columns: testing samples fromCelebA.
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mutually. Therefore, CPGAN generates satisfying results, as
shown in Fig. 12h. However, due to the limited network
capacity of CPGAN, its performance is restricted. Motivated
by this, we improve the network capacity by introducing
recursive learning into CPGAN without increasing network
parameters, known as Re-CPGAN. Our Re-CPGAN gener-
ates visually more appealing UI-HR faces from very LR
inputs with uneven illumination. As visible in Fig. 12i, the
facial parts covered by shading artifacts in the third and
fourth rows, such as the mouth and jaw, are better recon-
structed compared to CPGAN.

5.4 Quantitative Comparisons With the SOTA

To evaluate the super-resolution performance quantita-
tively, we report the average Peak Single-to-Noise Ratio
(PSNR), Structural SIMilarity (SSIM) values as well as aver-
age Facial Landmark Localization Error (FLLE) on the entire
testing set in Table 1. FLLE measures the euclidean distance
between the estimated facial landmarks and the ground-
truth ones. We employ a state-of-the-art face alignment
method, i.e., FAN [70], to detect 68 point facial landmarks.

As shown in Table 1, our Re-CPGAN achieves remark-
ably better quantitative results than other state-of-the-art
methods on both indoor and in-the-wild databases. Specifi-
cally, on the Multi-PIE testing set, Re-CPGAN outperforms
the second best method CPGAN with a large margin of
0.57 dB in PSNR. This is mainly because our external CPnet
progressively improves super-resolution results via a recur-
sive fashion. As a result, the hallucinated faces by Re-
CPGAN are more similar to the ground-truths. Further-
more, Table 1 also demonstrates that both IN+FH and FH
+IN methods fail to achieve satisfying quantitative perfor-
mance. This implies that jointly addressing face hallucina-
tion and illumination compensation is more suitable and
effective for this challenging task.

5.5 Comparisons of Upsampling Very LR Faces

We evaluate our method qualitatively on very low-resolu-
tion face images (8� 8 pixels) with a 16� magnification fac-
tor, compared with other state-of-the-art methods. This is a
very challenging case for face hallucination because 16� 16
pixels will be recovered from a single pixel and an input
NI-LR image only has 8� 8 pixels.

As shown in Fig. 13, our Re-CPGAN achieves pleasant
hallucination performance on such challenging images (see
the first two lines in Fig. 13i). However, the results of the
state-of-the-art methods deviate from the ground-truth
appearance severely. On the contrary, our Re-CPGAN
recovers authentic global structures and local details. More-
over, the joint face hallucination and illumination compen-
sation mechanism performed in Re-CPGAN significantly
reduces artifacts.

5.6 Robustness Towards Poses and Expressions

We also evaluate our method qualitatively on the NI-LR
faces under large poses and complex expressions. Since
these input faces are accompanied by not only non-uniform
illumination but also self-occlusions, it is challenging to nor-
malize and super-resolve them.

Fig. 13 shows that the state-of-the-art methods fail to
reconstruct plausible UI-HR faces, where the edges are
blurry and the structures are distorted. In contrast, our Re-
CPGAN achieves superior performance when the input LR
faces undergo large poses (e.g., 90o) and complex facial
expressions (e.g., “smile”, “disgust”). This demonstrates the
robustness of our method towards pose and facial expres-
sion variations. Since recursive learning is applied to the
Ex-CP unit, our Re-CPGAN is able to recover diverse char-
acteristics of NI-LR inputs progressively.

5.7 Ablation Study

5.7.1 Impact of Increasing Recursion Depths

To study the effect of recursion depths, Re-CPGAN variants
with different numbers of recursions (e.g., 1, 4, 8, 12, 16) are
compared.

Facial Landmarks Estimation. Here, we study the impacts
of recursion depths on our heatmap estimation module.
Fig. 14 shows that the estimated facial landmarks are more
precise as the recursion depth increases. We attribute such
better performance to the deeper model structure intro-
duced by more recursion operations.

TABLE 1
Average PSNR [dB], SSIM and FLLE Results of Compared

Methods on the Testing Sets (16� 16, 8�)

Method Multi-PIE CelebA

FH

PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 12.838 0.385 21.312 12.794 0.377 22.156
SRGAN 16.769 0.546 10.361 17.951 0.506 10.083
FSRnet 19.342 0.611 7.972 19.854 0.587 8.926
FHC 20.680 0.634 6.709 21.130 0.652 7.841

Method Multi-PIE CelebA

IN [43]+FH

PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 13.315 0.399 20.891 13.018 0.404 21.074
SRGAN 15.044 0.486 13.102 16.512 0.491 11.277
FSRnet 15.810 0.497 13.336 18.124 0.518 9.902
FHC 18.263 0.595 8.409 19.508 0.579 8.947

Method Multi-PIE CelebA

FH+IN [3]

PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 12.960 0.387 19.405 12.945 0.392 21.898
SRGAN 14.252 0.448 14.126 15.237 0.448 12.055
FSRnet 15.449 0.491 13.228 15.825 0.453 12.953
FHC 17.554 0.582 8.977 16.459 0.490 11.280

Method Multi-PIE CelebA

Joint FH+IN

PSNR SSIM FLLE PSNR SSIM FLLE

CPGAN 24.639 0.778 3.654 23.972 0.723 3.991
Re-CPGAN 25.211 0.794 2.762 24.348 0.759 2.934
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Face Hallucination. We also investigate the effect of recur-
sion depths on face hallucination performance qualitatively
and quantitatively. As shown in Fig. 6b, hallucinated faces

become more photo-realistic when we apply more recur-
sions to Re-CPGAN. It indicates that increasing recursion
depths not only leads to a deep yet compact model but also
boosts performance. Moreover, Fig. 15 demonstrates that
the quantitative results improve as more recursions are per-
formed. It is noteworthy that the performance gains become
negligible when continuing to increase the recursion depth
more than 10.

5.7.2 Impacts of Internal CPnet

As indicated by the quantitative results of the IN+FH and
FH+IN combination methods in Table 1, simply combining
existing face hallucination and illumination compensation
methods leads to sub-optimal hallucination performance.
Our Re-CPGAN embeds an internal CPnet to initially offset
non-uniform illumination by exploiting the internal guid-
ance, and it is able to reduce the ambiguous mapping
caused by shading artifacts in CPUN, thus facilitating the
latter upsampling operations.

To evaluate the impact of the internal CPnet, we replace
it with a convolutional layer and use this convolutional
layer to encode NI-LR faces. As shown in Table 2, the per-
formance of only using the input convolutional layer,
marked by w/o IN, degrades almost 2 dB in terms of PSNR
onMulti-PIE. Moreover, as shown in Fig. 7c, the Re-CPGAN

Fig. 13. Comparison with state-of-the-art methods on very challenging situations. Columns: (a) Interpolated unaligned NI-LR inputs. (b) Bicubic inter-
polation + SfSNet [3]. (c) SRGAN [62]. (d) FSRnet [33]. (e) FHC [4]. (f) HiDT [43] + FHC [4]. (g) FHC [4] + SfSNet [3]. (h) CPGAN [5]. (i) Re-CPGAN.
(j) Ground-truth UI-HR images (128� 128 pixels).

Fig. 14. Facial landmark estimation by Re-CPGAN variants on CelebA
and Multi-PIE faces. (a) Re-CPGAN-r1. (b) Re-CPGAN-r4. (c) Re-
CPGAN-r8. (d) Re-CPGAN-r12. (e) Re-CPGAN-r16. Here, Re-CPGAN-
rN means the Re-CPGAN variant with N EX-CP units. Please zoom in to
see the improvements.
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variant without the internal CPnet produces flawed results
with obvious distortions and blurred artifacts. It implies
that the internal CPnet recovers high-frequency facial
details from non-uniform illumination and thus improves
face hallucination performance.

5.7.3 Impacts of Recursive External CPnet

Compared to our previous work [5], Re-CPGAN does not
require more network parameters or wider architectures for
better performance. As illustrated in Fig. 3, we design the
recursive external CPNet to normalize illumination and
enhance facial details at the feature level. Benefiting from
the recursive learning, we improve the face hallucination
performance significantly in Re-CPGAN compared to
CPGAN and do not introduce new parameters for addi-
tional layers.

We remove the recursive external CPNet and then feed
the output of the internal CPnet to the face reconstruction
net directly, and this variant is marked as w/o EX, in
Table 2. As demonstrated in Table 2, the performance of
w/o EX degrades 2.32 dB compared to our Re-CPGAN on
Multi-PIE. It implies that the recursive external CPnet
recovers facial details authentically. Furthermore, without
using the recursive external CPnet, the reconstructed results
suffer ghosting artifacts, such as blurry edges, as seen
Fig. 7d. It also demonstrates that the recursive external
CPnet plays a crucial role in our model.

5.7.4 Impacts of Different Losses

We report the performance of Re-CPGAN variants that are
trained with different loss combinations on Multi-PIE and

CelebA (see Table 3 and Fig. 7). We denote the compared
loss combinations as follows: ið Þ L�

G: Lmse and Lh; iið Þ Ly
G:

Lmse, Lid and Lh; iiið Þ Lz
G: Lmse, Lid and Ladv; ivð Þ LG: Lmse,

Lid, Lh and Ladv. Note that Lh is a prerequisite objective in
training our heatmap estimation module.

As demonstrated in Table 3, using our illumination
compensation loss (Lic) leads to better quantitative
results. Because Lic constrains the illumination character-
istics of the reconstructed UI-HR faces to be close to the
guided UI-HR ones in the latent subspace, the halluci-
nated faces will achieve uniform illumination, thus being
similar to their UI-HR ground-truths. Only employing the
intensity similarity loss Lmse leads to unpleasant results
(L�

G in Table 3). The identity similarity loss (Lid) not only
improves the visual quality as seen in Fig. 7g), but also
increases the quantitative performance (Ly

G as indicated
in Table 3). This experiment demonstrates that Lid forces
the high-level features of the hallucinated faces, i.e., iden-
tity information, to be similar to their ground-truth coun-
terparts and thus improves hallucination performance. In
addition, we also verify the effectiveness of the structure
similarity loss (Lh). As indicated in Table 3 (Lz

G), remov-
ing Lh leads to degraded quantitative performance since
Lh enforces the structure of hallucinated faces to resemble
their ground-truths. The adversarial loss is used to
enforce upsampled faces not only to be realistic but also
to exhibit in a well-illuminated condition. Hence, with
the help of the adversarial loss (Ladv), Re-CPGAN
achieves photo-realistic face images (see Fig. 7l) and the
highest quantitative results (i.e., LG in Table 3).

5.7.5 Impacts of Guided Faces

Our method employs an external guided UI-HR face for
illumination compensation. We design the external CPnet
to learn illumination features from a guided face, and pro-
pose an illumination compensation loss to enforce the illu-
mination characteristics of the reconstructed UI-HR face to
be similar to those of the guided face in the latent subspace.
In this fashion, we offset non-uniform illuminations of input
NI-LR faces under the guidance of external lighting infor-
mation rather than only depending on internal information.
As shown in Fig. 7i, the face hallucination performance of
Re-CPGAN degrades without using the guided face. Note
that we remove the guided face branch and retrain the
entire network.

Fig. 15. Impacts of recursion depths on CelebA and Multi-PIE testing sets.

TABLE 2
Ablation Study of Different Sub-Networks on CelebA and

Multi-PIE Databases (16� 16, 8�)

w/o CPnet
Multi-PIE CelebA

PSNR SSIM PSNR SSIM

w/o IN 23.215 0.752 22.679 0.715
w/o EX 22.890 0.733 22.151 0.709
w/o D 23.287 0.756 22.908 0.722

Re-CPGAN 25.211 0.794 24.348 0.759

TABLE 3
Ablation Study of Different Losses (16� 16, 8�)

Multi-PIE CelebA

PSNR SSIM PSNR SSIM

w/o Lic L�
G 22.013 0.704 21.174 0.652

Ly
G 22.732 0.729 21.755 0.698

Lz
G 23.148 0.743 22.108 0.707

LG 23.759 0.780 22.855 0.720

w/Lic L�
G 22.640 0.717 22.043 0.705

Ly
G 23.287 0.756 22.908 0.722

Lz
G 23.944 0.782 23.276 0.738

LG 25.211 0.794 24.348 0.759
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Then, we explore the impact of different guided faces on
our method. As seen in Fig. 16, by using guided faces with
different facial attributes (e.g., “gender”, “age”, “makeup”,
and “glasses”), we still obtain photo-realistic results and the
hallucinated faces are not affected by different facial attrib-
utes of guided faces. The is mainly because we employ
guided faces including different variations in training Re-
CPGAN and it learns to focus on the illumination style
rather than other attributes.

Furthermore, Fig. 16 also implies that our method can gen-
erate identity-preserving results regardless of the identities of
guided faces. The reasons are as follows: (1) Since our copy
block is designed to explicitly learn the illumination pattern
from an external guided UI-HR face under the supervision of
the illumination compensation loss, it only adopts illumination
features from the guided images rather than the facial contents.
(2) We apply the identity similarity loss to hallucinated faces,
thus enabling our Re-CPGAN to preserve identity information.

6 DISCUSSION

6.1 Comparisons With SOTA on UI Faces

As shown in Fig. 2d, the illumination processing method [3]
is not suitable to remove illuminations of NI-LR faces and
lead to artifacts in normalized results. Then, the produced
artifacts would affect the performance of face hallucination
methods (see Fig. 2e). In contrast, we jointly remove illumi-
nations and hallucinate faces instead of treating these two

task separately. Therefore, we significantly alleviate side-
effects caused by either of these two processes.

Furthermore, we conduct experiments to evaluate Re-
CPGAN and the state-of-the-art face hallucination methods
on the LR faces with normal illumination. In this case, the illu-
mination normalization methods are not necessary and thus
not employed. As shown in Fig. 17, Re-CPGAN still outper-
forms the state-of-the-art methods. Note that, our previous
method CPGAN [5] intends to increase the network depth to
achieve better hallucination performance but is limited by the
GPU memory. In this work, we employ a recursive external
CPnet in Re-CPGAN and thus achieve a deep yet compact
model. This also demonstrates that the effectiveness of our
recursive learning for the external CPnet.

6.2 Performance on Real NI-LR Faces

Although our model is trained on the synthesized NI=UI
CelebA face pairs, our method can effectively hallucinate
the faces under real illumination conditions. To demon-
strate this, we randomly select face images with real non-
uniform illumination from CelebA excluding the faces used
for generating our training dataset. Then, we obtain the NI-
LR face samples (16� 16 pixels) by transforming and down-
sampling these images. These NI-LR faces do not share illu-
mination styles with the examples in the training dataset,
and thus these samples are much more challenging. As
shown in Fig. 18, our Re-CPGAN achieves superior normal-
ization and hallucination performance on such randomly
chosen images. Therefore, our Re-CPGAN is not restricted
to certain illumination styles.

Moreover, we also evaluate our model on real-world NI-
LR faces. To do so, we randomly choose face images from
the Widerface database [74] for testing. Widerface contains
in-the-wild faces which are affected by various degradation,
illumination and noise types. Here, our Re-CPGAN model
is trained on the CelebA training set. As seen in Fig. 19, our
Re-CPGAN not only hallucinates the visually appealing HR
faces but also reduces the shading artifacts.

6.3 Comparisons With the SOTA
on Face Recognition

We demonstrate that our Re-CPGAN boosts the perfor-
mance of low-resolution face recognition. We adopt the
“recognition via hallucination” framework to conduct face
recognition experiments on the Multi-PIE [9] database.
Concretely, aggressively downsampled faces are first

Fig. 16. The hallucinated results of our Re-CPGAN with different guided
faces.

Fig. 17. Comparison with state-of-the-art methods. Columns: (a) UI-LR inputs (16� 16 pixels). (b) Bicubic interpolation. (c) FSRnet [33].
(d) SRGAN [62]. (e) WaveletSRnet [26]. (f) FHC [4]. (g) CPGAN [5]. (h) Re-CPGAN. (i) Ground-truth UI-HR images (128� 128 pixels).
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hallucinated by face hallucination methods and then used
for recognition.

Experimental Settings. First, we partition theMulti-PIE data-
base [9] into subject disjoint training and testing sets. Then, we
train the compared face hallucinationmethods on the training
set and then conduct face recognition experiments on the test-
ing set. The testing set includes the NI-LR/UI-HR Multi-PIE
face pairs of 50 testing individuals under 10 illumination con-
ditions. Here, for all the testing images, we crop the aligned
face regions, resize them to 128� 128 pixels, and thus gener-
ate our HR face images. We generate the NI-LR faces (16� 16
pixels) by transforming and downsampling the NI-HR ones.
Then, the NI-LR and UI-HR face images construct the probe
and gallery sets respectively. Afterwards, we employ a state-
of-the-art pre-trained face recognition model (SphereFace-
Net [75]) to conduct face recognition experiments on LR faces
andhallucinatedHR faces fromLRones bydifferentmethods.
Finally, we compute the cosine distance of the extracted deep
features for face recognition. In particular, we train a

CycleGAN [41] to alleviate the domain gap between gallery
faces and hallucinated ones.

Evaluation. The performance comparisons of Re-CPGAN
and other face hallucination methods are shown in Table 4.
Here, we compare the performance of face hallucination
methods as well as the combinations of face hallucination
and illumination compensation. As indicated by Table 4,
the face recognition rates of our hallucinated UI-HR faces
are superior to those of the NI-LR faces and other methods’
results. This demonstrates that our Re-CPGAN achieves
remarkable identity preservation ability, which substan-
tially satisfies the need of the downstream face recognition
task. Moreover, we can see that direct combinations of face
hallucination and illumination compensation achieve infe-
rior performance compared to face hallucination methods.
This also implies that it is more reasonable to take these two
tasks in a unified framework.

6.4 Comparisons With the SOTA on Face
Expression Classification

Furthermore, we manifest that our Re-CPGAN also benefits
low-resolution face expression classification tasks.

Experimental Settings.We perform a standard 10-fold sub-
ject-independent cross-validation on the Multi-PIE expres-
sion dataset [9]. First, the NI-LR=UI-HR Multi-PIE face pairs
with complex expressions, i.e., “smile”, “disgust”, “squint”,
“scream”, “surprise”, and “neutral”, are split into 10 subsets
according to the identity information and the individuals in
any two subsets are mutually exclusive. In each experiment,
9 subsets are used for training and the remaining one for
testing. We train all the compared hallucination models on
the same training database and employ a state-of-the-art
expression classification model, VGG-VD-16 [67], to identify
the facial expressions of UI-HR faces hallucinated from NI-
LR ones. Here, state-of-the-art face hallucination methods
are used to upsample the testing faces, while the classifica-
tion results of the NI-LR faces upsampled by bicubic inter-
polation and the ground-truth UI-HR faces are also
provided as baselines. At last, the expression classification
performance for each method is obtained by averaging the
results of the 10 folds, as indicated in Table 5.

Evaluation.As indicated in Table 5, the upsampled faces of
our method achieves superior face expression classification
rates. This also demonstrates that the hallucinated face images

Fig. 18. Results of super-resolving NI-LR face images on CelebA
(16� 16, 8�). First row: real NI-HR images. Second row: unaligned NI-
LR images. Third row: guided UI-HR images. Fourth row: our normalized
and hallucinated results.

Fig. 19. Results of upsampling NI-LR face images on Widerface
(16� 16, 8�). First row: real NI-LR images. Second row: guided UI-HR
images. Third row: our normalized and hallucinated results.

TABLE 4
Face Recognition Performance Comparison on the

Multi-PIE Database

FH method
Accuracy

FH IN+FH FH+IN

Bicubic 59.60% 49.84% 48.12%
SRGAN [62] 62.04% 52.31% 51.79%
FSRnet [33] 63.15% 53.62% 52.83%
FHC [4] 65.29% 54.47% 53.06%

CPGAN [5] 84.36%

NI-LR 61.21%

UI-HR 98.13%

Re-CPGAN 87.45%
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of our Re-CPGAN are more authentic to the ground-truth UI-
HR faces in comparison to the state-of-the-art. Particularly,
the face expression classification rate of our hallucinated faces
exceeds that of the NI-LR ones by a large margin of 30.93 per-
cent. Hence, Re-CPGAN indeed facilitates the low-resolution
face expression classification task.

6.5 Model Size Analyses

As indicated in Fig. 20, the parameters of Re-CPGAN are
much smaller than CPGAN [5]. Meanwhile, we achieve
improvements on the quantitative performance, as indi-
cated by Fig. 20. Since recursive learning is employed to
construct a very deep network, we effectively reuse network
parameters and boost the model performance. Note that,
increasing the recursion depths, our model parameters do
not increase. In contrast, simply stacking the CPnet will
increase parameters dramatically but does not necessarily
lead to superior performance.

6.6 Limitations

Since our work uses the bilinear downsampling to generate
NI-LR faces artificially, we do not contain real-world deg-
radation types (e.g., motion blur, compression artefacts,
sensor noise) in the training dataset. Therefore, we pro-
duce relative blurry results when applied to real-world NI-
LR images (see Fig. 19). This deterioration is mainly caused
by the significant domain shift between LR face data. We
will address the domain shift caused by different image
degradation factors in face hallucination as our future
work.

7 CONCLUSION

In this paper, we presented a recursive copy and paste genera-
tive adversarial network (Re-CPGAN) to jointly hallucinate
the NI-LR face images and compensate for the non-uniform
illumination.With the internal and recursive external CPNets,
our method progressively upsample and refine facial features
based on the spatial distribution of facial structure up to a
magnification factor of 16�. In particular, Re-CPGAN offsets
non-uniform illumination and upsamples facial details alter-
natingly.Meanwhile, the RaINmodel is presented to generate
sufficient face pairs under diverse illumination conditions.
Our RaIN model not only significantly enriches our training
dataset but also improves the generalization of our Re-

CPGAN. Extensive results demonstrate that our Re-CPGAN
produces HR identity-preserving face images and substan-
tially boosts the performance of downstream tasks, i.e., face
recognition and expression classification. This makes our Re-
CPGANmore desirable in practice.
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