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Abstract—Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart

by learning a mapping from an exemplary dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate

patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal and rejuvenation. An

LR input contains low-frequency facial components of its HR version while its residual face image, defined as the difference

between the HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate

that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in

face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling

network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which

incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder, and deconvolutional

layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired

attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16�16 pixels)

unaligned face images with a large upscaling factor of 8� while reducing the uncertainty of one-to-many mappings remarkably. By

conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination

results and outperforms the state-of-the-art.

Index Terms—Face, super-resolution, hallucination, attribute

Ç

1 INTRODUCTION

FACE images provide important information for human
visual perception as well as computer analysis [1], [2].

Depending on the imaging conditions, the resolution of a
face area may be unfavorably low, thus raising a critical
issue that would directly impede our understanding.
Motivated by this challenge, recovering high-resolution
(HR) face images from their low-resolution (LR) counter-
parts, also known as face hallucination, has received
increasing attention recently [3], [4], [5], [6]. State-of-the-
art face hallucination methods try to explore and utilize
image domain priors for super-resolution. Even though
they are trained on large-scale datasets benefiting from
the development of deep learning techniques, ill-posed
nature of the problem, which induces inherent ambigui-
ties such as one-to-many correspondence between a given
LR face and its possible HR counterparts, would still lead
to drastically flawed outputs especially when the magnifi-
cation factor is very large.

For instance, as shown in Fig. 1, hallucinated details gen-
erated by the state-of-the-art face super-resolution meth-
ods [4], [5] are semantically and perceptually inconsistent
with the ground-truth HR image, and inaccuracies range
from unnatural blur to attribute mismatches including the
wrong facial hair and mixed gender features just to count a
few. Note that Zhu et al.’s method [5], dubbed CBN,
exploits facial structure information to super-resolve facial
components while Yu and Porikli’s method [4], known as
TDAE, employ a class-specific discriminative prior. These
methods explore either the low-level class-specific feature
similarity or mid-level structure information as a spatial
constraint in face super-resolution. However, they cannot
capture high-level facial characteristic information and thus
generate semantically inaccurate upsampled facial details
in the outputs.

Unlike previous work, we utilize high-level semantic
information, i.e., facial attributes, to reduce the ambiguity
when super-resolving very low-resolution faces. However,
a direct embedding of the binary facial attribute vector as
an additional input channel to the network would still yield
degraded results (see Fig. 3c). A simple combination of low-
level visual information (an LR image) with high-level
semantic information (attributes) in the input layer does not
prevent ambiguity or provide consistent LR-HR mappings.
We also note that the low-frequency facial components are
visible in the LR input while the missing high-frequency
details are often contained in the corresponding residual
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between the HR face image and the upsampled LR image
(e.g.interpolated by Bicubic interpolation). Thus, our intui-
tion is to incorporate facial attribute information into the
residual features that are extracted from LR inputs (as seen
in the yellow block of Fig. 2) for super-resolution of high-
frequency facial details.

Driven by our observations above, we present a novel LR
face image upsampling network that is able to embed facial
attributes into face super-resolution. In contrast to previous
face super-resolution networks [3], [4], [5], [8], [9], [10], [11],
our network employs an autoencoder with skip connections
to amalgamate visual features obtained from LR face images

and semantic cues provided from facial attributes. It
progressively upsamples the concatenated feature maps
through its deconvolutional layers. Inspired by the architec-
ture of StackGAN [12], [13], we also employ a discrimina-
tive network that is used to examine whether a super-
resolved face image is similar to authentic face images as
well as the attributes extracted from the upsampled faces
are faithful to the input attributes. As a result, our discrimi-
native network can guide the upsampling network to incor-
porate the semantic information in the overall process. In
this manner, the ambiguity in hallucination can be signifi-
cantly reduced. Furthermore, since we apply the attribute
information into the LR residual feature maps rather than
concatenating it to the low-resolution input images, we can
learn more consistent mappings between LR and HR facial
patterns. This allows us to generate realistic high-resolution
face images as shown in Fig. 1h.

Above all, the contributions of our work can be summa-
rized as:

� We present a new semantics-embedded face halluci-
nation framework to super-resolve LR face images.
Instead of directly upsampling LR face images, we
first encode LR images with facial attributes and
then super-resolve the encoded feature maps.

� We propose an autoencoder with skip connections to
extract residual feature maps from LR inputs and
concatenate the residual feature maps with attribute
information. This allows us to fuse visual and
semantic information to achieve better visual results.

� Even though our network is trained to super-resolve
very low-resolution face images, the upsampled HR
faces can be further modified by tuning the face
attributes in order to add or remove particular

Fig. 1. Comparison with the state-of-the-art CNN based face hallucina-
tion methods. (a) 16� 16 LR input image. (b) 128� 128 HR original
image (not used in training). (c) The corresponding HR image of the
nearest neighbor of the given LR image in the dataset after compensat-
ing for misalignments. (d) Result of VDSR [7], which is a CNN based
generic super-resolution method. (e) Result of VDSRy [7] retrained with
LR and HR face image pairs. (f) Result of CBN [5]. (g) Result of
TDAE [4]. (h) Our result.

Fig. 2. The architecture of our attribute embedded upsampling network. The network consists of two parts: an upsampling network and a discrimina-
tive network. The upsampling network takes LR faces and attribute vectors as inputs while the discriminative network takes real/super-resolved HR
face images and attribute vectors as inputs.
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attributes. This property significantly increases the
flexible of our face super-resolution method rather
than only outputting a deterministic upsampled
face.

� To the best of our knowledge, our method is the first
attempt to utilize high-level semantic information,
i.e., facial attribute, into face super-resolution, effec-
tively reducing the ambiguity caused by the inherent
nature of this task, especially when the upscaling fac-
tor is very challenging, i.e.8�.

2 RELATED WORK

Since our work not only relates to traditional face hallucina-
tion methods but also has a close relationship with genera-
tive adversarial networks (GAN) [14], we briefly review the
related literatures in these two fields.

Face hallucination methods can be roughly grouped into
three categories: global model based, part based, and deep
learning based. Global model based methods upsample a
whole LR input image, often by a learned mapping between
LR and HR face images such as Principal Component Anal-
ysis (PCA). The seminal works [8], [15] progressively trans-
fer the pixels of HR faces to the given LR face in a Gaussian
Pyramid by maximizing a posteriori estimate of the
ground-truth HR face. Wang and Tang [16] learn a linear
mapping between LR and HR face subspaces, and then
reconstruct an HR output with the coefficients estimated
from the LR input. Liu et al. [17] not only establish a global
model for upsampling LR inputs by PCA but also exploit a
local nonparametric model, i.e., Markov Random Field
(MRF), to enhance the facial details as well as mitigate
blocky and ghosting artifacts in the upsampled faces.
Kolouri and Rohde [18] morph an HR output from the
exemplar HR faces whose downsampled versions are simi-
lar to the LR input by optimal transport and subspace learn-
ing techniques. Global model based methods require LR
inputs to be precisely aligned and share similar poses to
exemplar HR images. However, aligning LR faces is diffi-
cult when the resolutions of LR faces are very low (e.g.,
16 � 16 pixels). Therefore, global model based algorithms
produce severe artifacts when there are misalignments and
pose variations in LR inputs.

Aimed at addressing pose variations, part based meth-
ods super-resolve individual facial regions separately.
They either exploit reference patches or facial compon-
ents to reconstruct the HR counterparts of LR inputs.
Ma et al. [9] blend position patches extracted from multiple
aligned HR images to super-resolve aligned LR face
images. In order to suppress image noise and achieve bet-
ter performance, several follow-up methods [19], [20], [21]
reconstruct the position patches in LR faces by sparse cod-
ing while Shi et al. [22] design a patch-based reconstruction
model in the high-dimensional kernel space. Liu et al. [23]
develop a bi-layer model to hallucinate face images and
remove noise and outliers in LR inputs simultaneously. In
[23], a weight vector is employed to identify whether a
pixel is corrupted by noise or not and thus used to tune the
contribution of each pixel for hallucination. Jiang et al. [24]
exploit the neighboring information of position patches,
known as context-patches, to reconstruct HR face images.

Tappen and Liu [25] use SIFT flow [26] to align the facial
components of LR images and reconstruct HR facial details
by warping the reference HR images. Yang et al. [27]
employ a facial landmark detector to localize facial compo-
nents in the LR images and then reconstruct details from
the similar HR reference components. Because part based
methods need to extract and align facial parts in LR images
accurately, their performance degrades dramatically when
LR faces are tiny. More comprehensive survey of tradi-
tional face super-resolution methods can be referred to the
literature review [28].

Recently, deep learning based models achieve significant
progress in several image processing tasks and are now
pushing forward the state-of-the-art in super-resolution.
For instance, Yu and Porikli [11] employ deconvolutional
layers to super-resolve aligned LR faces and convolutional
layers to remove potential blocky artifacts. Their method
also resorts an unsharp filter to enhance the edges of hallu-
cinated faces. In order to train an end-to-end upsampling
network, Yu and Porikli [3] introduce a discriminative gen-
erative network to super-resolve aligned tiny LR face
images. Instead of restoring image intensities of HR faces,
Huang et al. [29] estimate wavelet coefficients of an
upsampled HR face in the framework of generative adver-
sarial networks. Then the upsampled HR face is recon-
structed from the estimated wavelet coefficients. Zhu and
Fan [30] first extract feature maps from a blurry LR face
image by a convolutional neural network (CNN) and then
reconstruct a sharp HR version from the extracted feature
maps. Cao et al. [6] employ an attention-aware mechanism
to select facial regions from pre-aligned LR faces and then
apply a local enhancement network to super-resolve the
selected LR patches. Xu et al. [31] design a multi-class
adversarial loss to super-resolve aligned LR blurry faces
and text images in the framework of generative adversarial
networks. Dahl et al. [32] exploit an autoregressive genera-
tive model, also known as Pixel-RNN [33], to upscale pre-
aligned LR face images.

To relax the requirement of face alignments, Yu and
Porikli [10] interweave multiple spatial transformer net-
works [34] with the deconvolutional layers. In this manner,
their method can align LR faces while super-resolving them
simultaneously. Based on the observation that mild distor-
tions and artifacts in upsampled HR faces can be mitigated
in their downsampled versions, their follow-up work [4]
develops a decoder-encoder-decoder structure to super-
resolve noisy and unaligned LR faces. Zhu et al. [5] develop
a cascade bi-network to localize facial components first and
then super-resolve the unaligned LR faces. Chen et al. [35]
propose two-stage networks, where low-frequency compo-
nents of LR faces are first super-resolved and then face pri-
ors (i.e., facial component locations) are used to enrich facial
details. Later, Yu et al. [36] develop a facial component heat-
map guided upsampling network, in which feature maps
are first aligned and then the facial components are esti-
mated from the upsampled aligned feature maps. In this
way, Yu et al.ease the difficulty of estimating facial compo-
nents from LR faces. Bulat et al. [37] employ a constraint
that the landmarks of the upsampled faces should be
close to the landmarks detected in their ground-truth
images to handle various poses. However, due to the
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inherent under-determined nature of super-resolution, they
may still produce results unfaithful to the ground-truths,
such as gender reversal and face rejuvenation. Grm et al.
[38] and Hsu et al. [39] embed identity information into face
hallucination in order to boost face recognition performance
on the upsampled HR faces. Since the identity information
is only employed in the loss function but not enforced in the
testing phase, those methods may still suffer the inherent
ambiguity of super-resolution in the testing phase.

Lee et al.’s method [40], concurrent with our work, also
employs attributes in face super-resolution, where a feature
extractor network is used to extract and combine the fea-
tures of attributes and LR faces. However, their discrimina-
tive network is only designed to distinguish whether the
upsampled faces are realistic or not and there is no mecha-
nism to exam whether the attributes are successfully
embedded or not. Lu et al. [41] present an attribute-guided
face generation network based on conditional Cycle-
GAN [42]. Similar to our method [43], their method also
takes one LR input image and an attribute vector to generate
an HR face which satisfies the given attributes. However,
[41] only addresses aligned LR faces and requires to train
four networks, i.e., two generators and two discriminators.

Image generation also has a close relationship to face halluci-
nation when generated images are faces. Goodfellow et al. [14]
propose a generative adversarial network (GAN) to construct
images from noise, but the resolution of constructed images is
limited (i.e.48�48 pixels) due to difficulty in training. Later,
variants of GANs have been proposed to increase the resolu-
tions and quality of generated images [44], [45], [46], [47], [48].
Rather than generating images from noise, conditional
GANs [49] have been proposed to generate images from both
noise as well as certain conditional inputs, and the conditional
information is fed to both the generator and the discriminator.
[50] and [12] generate images based on textual inputs.
Yan et al. [13] use a conditional CNN to generate faces based on
attribute vectors. Perarnau et al. [51] develop an invertible con-
ditional GAN to generate new faces by manipulating facial
attributes of the input images, while Shen and Liu [52] change
attributes of an input image on its residual image by training
two generative networks in a complementary fashion. Since
their methods aim at generating new face images rather than
super-resolving faces, they may change the identity informa-
tion. In contrast, our work focuses on obtaining HR faces faith-
ful to LR inputs.We employ the attribute information to reduce
the uncertainty in face hallucination rather than producing
new face images.

GANs based image-to-image translation networks have
also been proposed, such as domain transfer [42], [53],
super-resolution [3], [54] as well as photo editing [55], [56].
In particular, several face editing works, such as face
aging [57], face completion [58], [59], and face attribute
transferring [55], [56], also share many similarities with face
hallucination. For instance, the inputs are face images and
the outputs are another versions of the input images.
However, face editing works mainly focus on changing cer-
tain attributes of the given faces or completing the missing
parts of faces. On the contrary, our method aims at super-
resolving LR input face images to their HR counterparts by
exploiting the provided facial attributes instead of editing
the input LR faces.

3 SUPER-RESOLUTION WITH ATTRIBUTE

EMBEDDING

Each low-resolution face image may correspond to many
high-resolution face candidates during the process of
increasing their resolutions. To reduce the ambiguity
encountered in the super-resolution process, we present an
upsampling network that takes LR faces and semantic infor-
mation (i.e., facial attributes) as inputs and outputs super-
resolved HR faces. The entire network consists of two parts:
an upsampling network and a discriminative network. The
upsampling network is used for embedding facial attributes
into LR input images as well as upsampling the fused fea-
ture maps. The discriminative network is used to constrain
the input attributes to be encoded and the hallucinated face
images to be similar to real ones. The entire architecture of
our network is illustrated in Fig. 2.

3.1 Attribute Embedded Upsampling Network

The upsampling network is composed of a facial attribute
embedding autoencoder and upsampling layers (as shown
in the blue frame). Previous works [3], [4], [10], [11] only
take LR images as inputs and then super-resolve them by
deconvolutional layers. They do not make use of any valu-
able semantic information into account during super-
resolution. Indeed, obtaining semantic information such as
facial attributes for face images is not difficult, yet it is logi-
cal to make use of semantic information, especially for face
images. For instance, we can deduce gender information
from the outfits. Unlike previous works, we incorporate
low-level visual and high-level semantic information in face
super-resolution to reduce the ambiguity of the mappings
between LR and HR images.

Rather than concatenating LR input images with attribute
vectors directly, in our proposed attribute embedding net-
work we employ a convolutional-deconvolutional autoen-
coder with skip connections [60] to fuse visual features and
attribute vectors. Due to the skip connections, we can utilize
residual features obtained from LR input images to incorpo-
rate the attribute vectors. Specifically, at the bottleneck of the
autoencoder, we concatenate the attribute vector with the
residual feature vector as illustrated in the green and blue vec-
tors of Fig. 2. As shown in Fig. 3d, when we encode attributes
with the feature maps of LR faces at the bottleneck of the
autoencoder without using the skip connections instead of
residual feature maps, artifacts appear in the smooth regions
of the super-resolved result. After combining the residual fea-
ture vectors of LR inputs with the attribute vectors, we
employ deconvolutional layers to upsample the concatenated
feature maps. Since LR input images may undergo misa-
lignments, such as in-plane rotations, translations and scale
changes, we use spatial transformer networks (STNs) [34] to
compensate for misalignments similar to [4], [10], as shown in
the purple blocks in Fig. 2. Since STNs employ bilinear inter-
polation to re-sample images, they will blur LR input images,
as reported in [10]. Therefore, we only employ STNs in the
upsampling layers.

To constrain the appearance similarity between the
super-resolved faces and their HR ground-truth counter-
parts, we exploit a pixel-wise euclidean distance loss, also
known as pixel-wise ‘2 loss, and a feature-wise ‘2 loss,

YU ET AL.: SEMANTIC FACE HALLUCINATION: SUPER-RESOLVING VERY LOW-RESOLUTION FACE IMAGES WITH SUPPLEMENTARY... 2929

Authorized licensed use limited to: University of Queensland. Downloaded on December 31,2025 at 13:19:47 UTC from IEEE Xplore.  Restrictions apply. 



dubbed perceptual loss [61]. The pixel-wise ‘2 loss is
employed to enforce image intensity similarity between the
upsampled HR faces and their ground-truth images. As
reported in [3], deconvolutional layers supervised by an ‘2
loss tend to output over-smoothed results as shown in
Fig. 3e. Since the perceptual loss measures euclidean dis-
tance between features of two images, we use it to constrain
feature similarity between the upsampled faces and their
ground-truth ones. We use VGG-19 [62] to extract features
from images (please refer to Section 3.3 for more details).
Without the help of the perceptual loss, the network tends
to produce ringing artifacts to mimic facial details, such as
wrinkles, as seen in Fig. 3g.

3.2 Discriminative Network

In order to force the upsampling work to encode facial
attribute information, we employ a conditional discrim-
inative network. Specifically, the discriminative network is
designed to distinguish whether the attributes of super-
resolved face images are faithful to the desired attributes
embedded in the upsampling network or not and is used to
constrain the upsampled images to be similar to HR real
face images too.

Even though our autoencoder concatenates attribute vec-
tors with residual feature maps of the LR inputs, the upsam-
pling network may simply learn to ignore them, e.g., the
weights corresponding to the semantic information are
zeros. Therefore, we need to design a discriminator network
to enforce semantic attribute information into the generative
process. As shown in Fig. 3f, by employing a standard dis-
criminative network [3], [45], the output HR face still looks
like a female face even if the expected figure should be an
old male. It implies that the attribute information is not
well embedded. Therefore, simply embedding a semantic
vector into LR inputs may increase the ambiguity or deviate
the learned mapping between the LR and correct HR face
images.

We present a discriminative network to enforce the input
attribute information to be embedded in LR inputs, thus
generating the desired attributes in the hallucinated face
images. As shown in the red frame of Fig. 2, our discrimina-
tive network is constructed by convolutional layers and
fully connected layers. HR face images (real and upsampled
faces) are fed into the network while attribute information
is also fed into the middle layer of the network as condi-
tional information. Here, an attribute vector is replicated
and then concatenated with the feature maps of images.
Because CNN filters in the first layers mainly extract low-
level features while filters in higher layers extract image

patterns or semantic information [63], we concatenate the
attribute information with the extracted feature maps on the
third layer, which yields good empirical results in our
experiments. If the extracted features do not comply with
the input attribute information, the discriminative network
ought to pass that information to the upsampling network.
Our discriminative network is a binary classifier which is
trained with a binary cross-entropy loss. With the help of
the discriminative network, the attribute information can be
embedded into the upsampling network. As shown in
Fig. 3h, our final result is faithful to the age and gender of
the ground-truth image.

3.3 Training Procedure

Our face super-resolution network is trained in an end-to-
end fashion. We use an LR face image denoted by li and its
ground-truth attribute label vector ai as the inputs and the
corresponding HR ground-truth face image hi as the target.
Note that, since our network aims at super-resolving very
low-resolution face images rather than manipulating facial
attributes of HR face images, we only feed the correct attrib-
utes of LR face images into the upsampling network in the
training phase.

In training the entire network, we employ a binary cross-
entropy loss to update our discriminative network and then
train the upsampling network using a pixel-wise ‘2 loss, a
perceptual loss and the discriminative loss obtained from
our discriminative network. Therefore, we first update the
parameters of the discriminative network and then the
parameters of the upsampling network because the upsam-
pling network relies on the loss back-propagated from the
discriminative network to update its weights.

3.3.1 Training Discriminative Network

Our discriminative network is designed to embed attribute
information into the upsampling network as well as to force
the super-resolved HR face images to be authentic. Similar
to [12], [13], our goal is to make the discriminative network
be able to tell whether super-resolved faces contains the
desired attributes or not but fail to distinguish hallucinated
faces from real ones. Hence, in order to train the discrimina-
tive network, we take real HR face images hi and their cor-
responding ground-truth attributes ai as positive sample
pairs fhi; aig. Negative data is constructed from super-
resolved HR faces ĥi by our upsampling network and their
ground-truth attributes ai as well as real HR faces and mis-
matched attributes ~ai. Therefore, the negative sample pairs
consist of both fĥi; aig and fhi; ~aig. The objective function

Fig. 3. Ablation study of our network. (a) 16� 16 LR input image. (b) 128� 128 HR ground-truth image, its ground-truth attributes are male and old. (c)
Result without using an autoencoder. Here, the attribute vectors are replicated and then concatenated with the LR input directly. (d) Result without
using skip connections in the autoencoder. (e) Result by only using an ‘2 loss. (f) Result without using the attribute embedding but with a standard
discriminative network. In this case, the network is similar to the decoder in [4]. (g) Result without using the perceptual loss. (h) Our final result.
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for the discriminative network LD is expressed as:

LD ¼ � E logDdðh; aÞ½ �
� E log ð1�Ddðĥ; aÞÞ þ log ð1�Ddðh; ~aÞÞ

h i

¼� Eðhi;aiÞ�pðh;aÞ logDdðhi; aiÞ½ �
� Eðhi;~aiÞ�pðh;~aÞ log ð1�Ddðhi; ~aiÞÞ½ �
� Eðĥi;aiÞ�pðĥ;aÞ log ð1�Ddðĥi; aiÞÞ

h i

¼� Eðhi;aiÞ�pðh;aÞ logDdðhi; aiÞ½ �
� Eðhi;~aiÞ�pðh;~aÞ log ð1�Ddðhi; ~aiÞÞ½ �
� Eðli;aiÞ�pðl;aÞ log ð1�DdðUtðli; aiÞ; aiÞÞ½ �;

(1)

where d represents the parameters of the discriminative net-
work D, Ddðhi; aiÞ, Ddðĥi; aiÞ and Ddðhi; ~aiÞ are the outputs
of D, UtðliÞ is the output of our upsampling network and t
represents the parameters of our upsampling network. In
addition, pðh; aÞ represents the joint distribution of positive
sample pairs, pðĥ; aÞ as well as pðh; ~aÞ represent the joint dis-
tributions of negative sample pairs, and pðl; aÞ represents
the joint distribution of the LR input faces and their ground-
truth attributes.

Since all the layers in our discriminative network are differ-
entiable, back-propagation is used to calculate the gradients
with respect to the parameters of the discriminative network
d. Thus, weminimizeLD by RMSprop [64] as follows:

Diþ1 ¼ gDi þ ð1� gÞð@LD
@d Þ2;

diþ1 ¼ di � r @LD
@d

1ffiffiffiffiffiffiffiffiffiffiffiffi
Diþ1þ�

p ;
(2)

where r and g represent the learning rate and the decay rate
respectively, i indicates the index of the iterations, D is an
auxiliary variable, and � is set to 10�8 to avoid division by
zero.

3.3.2 Training Upsampling Network

Since our upsampling network aims at super-resolving LR
input images, we only feed our upsampling network with
LR face images li and their corresponding attributes ai as
inputs. To constrain the upsampled faces to be similar to
the HR ground-truth face images, we employ a pixel-wise
‘2 loss on image intensities, expressed as:

Lpix ¼ Eðĥi;hiÞ�pðĥ;hÞkĥi � hik2F
¼ Eðli;ai;hiÞ�pðl;a;hÞkUtðli; aiÞ � hik2F ;

(3)

where pðĥ; hÞ is the joint distribution of the upsampled faces
and their ground-truth counterparts and pðl; h; aÞ represents
the joint distribution of the LR and HR face images and their
corresponding attributes in the training dataset.

As mentioned in Section 3.1, we also employ a perceptual
loss Lfeat to enforce the feature similarity between the
super-resolved faces and their corresponding ground-
truths, written as:

Lfeat ¼ Eðĥi;hiÞ�pðĥ;hÞkFðĥiÞ �FðhiÞk2F
¼ Eðli;ai;hiÞ�pðl;a;hÞkFðUtðli; aiÞÞ �FðhiÞk2F ; (4)

where Fð�Þ denotes feature maps extracted by the ReLU32
layer in VGG-19 [62], which gives good empirical perfor-
mance in our experiments.

To enforce the upsampling network to encode the attri-
bution information, a discriminative loss Ldis is also
exploited as follows:

Ldis ¼ �Eðĥi;aiÞ�pðĥ;aÞlog ðDdðĥi; aiÞÞ
¼ �Eðli;aiÞ�pðl;aÞlog ðDdðUtðli; aiÞ; aiÞÞ; (5)

where pðĥ; aÞ indicates the joint distribution of the
upsampled faces and their corresponding attributes.

All the above three losses are used to update the parame-
ters of our upsampling network, and the total loss LU is
expressed as:

LU ¼ Lpix þ aLfeat þ bLdis; (6)

where a is a weight termwhich trades off between the image
intensity similarity and the feature similarity, and b is a
weight which trades off between the appearance similarity
and the attribute similarity. Here, we also employ RMSprop
to update the parameters of our upsampling network:

Diþ1 ¼ gDi þ ð1� gÞð@LU
@t

Þ2;

tiþ1 ¼ ti � r
@LU
@t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diþ1 þ �

p :
(7)

After updating the upsampling network, we can obtained
upsampled face images in better quality. Hence, we use HR
faces hallucinated by the newly updated upsampling net-
work to train the discriminative network again. By updating
these two network alternatingly, we can achieve realistic
super-resolved face images including correct attributes. The
entire training procedure is illustrated in Algorithm 1.

Algorithm 1. Training Procedure of our Entire Network

Input: minibatch size N , LR and HR face image pairs fli; hig
and their corresponding attributes ai, maximum number
of iterationsK.

1: while iter < K do
2: Choose one minibatch of LR and HR image pairs fli; hig

and their corresponding attributes, i ¼ 1; . . . ; N .
3: Generate one minibatch of HR face images ĥi from

fli; aig; i ¼ 1; . . .; N , where ĥi ¼ Utðli; aiÞ.
4: Generate mismatched attributes ~ai from ai by randomly

permuting one dimension in an attribute vector.
5: Generate positive sample pairs fhi; aig and negative sam-

ple pairs fĥi; aig and fhi; ~aig.
6: Update the parameters of the discriminative network Dd

by using Eqns. (1) and 2.
7: Update the parameters of the upsampling network U t by

using Eqns. (6) and 7.
8: end while
Output: Our attribute embedded upsampling network.

3.4 Super-Resolving LR Inputs with Attributes

The discriminative network D is only required in the train-
ing phase. In the super-resolving (testing) phase, we take
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LR face images and their corresponding attributes as the
inputs of the upsampling network U , and the outputs of U
are the hallucinated HR face images. In addition, although
the attributes are binary values, i.e., either 0 or 1, in training,
the attributes can be further scaled, such as negative values
or values exceeding 1, to manipulate the final super-
resolved results according to the users’ descriptions in the
testing phase.

3.5 Implementation Details

The detailed architectures of the upsampling and discrimi-
native networks are illustrated in Fig. 2. We employ convo-
lutional layers with kernels of size 4� 4 in a stride 2 in the
encoder and deconvolutional layers with kernels of size
4� 4 in a stride 2 in the decoder. The feature maps in our
encoder will be passed to the decoder by skip connections.
We also use the same architectures of the STN layers in [4]
to align feature maps. Specifically, the STN layers are con-
structed by convolutional and ReLU layers (Conv+ReLU),
max-pooling layers with a stride 2 (MP2) and fully con-
nected layers (FC). STN1 layer is cascaded by: MP2, Conv
+ReLU (with the filter size: 128 � 20� 5� 5), MP2, Conv
+ReLU (with the filter size: 20� 20� 5� 5), FC+ReLU
(from 80 to 20 dimensions) and FC (from 20 to 4 dimen-
sions). STN2 is cascaded by: MP2, Conv+ReLU (with the fil-
ter size: 64� 128� 5� 5), MP2, Conv+ReLU (with the filter
size: 128� 20� 5� 5), MP2, Conv+ReLU (with the filter
size: 20� 20� 3� 3), FC+ReLU (from 180 to 20 dimensions)
and FC (from 20 to 4 dimensions). We do not use zero-
padding in the convolution operations.

We set the learning rate to 0.001 and multiplied by 0.95
after each epoch, and a is set to 0.01. As suggested by [4],
we also set b to 0.01 and gradually decrease it by a factor
0.995, thus emphasizing the importance of the appearance
similarity. On the other hand, in order to guarantee the
attributes to be embedded in the training phase, we stop
decreasing bwhen it is lower than 0.005.

4 EXPERIMENTS

We evaluate our network qualitatively and quantitatively,
and compare with the state-of-the-art methods [4], [5], [6],
[7], [9], [22], [24], [35], [36], [40], [54]. Ma et al.’s method [9]
exploits position-patches in the exemplary dataset to recon-
struct HR images while Jiang et al.’s method uses context-
patches to upsample LR images. Shi et al. [22] establish the
correspondences between LR and HR position patches in a
high-dimensional kernel space. Kim et al.’s method [7],
dubbed VDSR, is a generic CNN based super-resolution
method. Ledig et al.’s method [54], also known as SRGAN,
is also a generic CNN based super-resolution method,
which employs an adversarial loss to enhance the super-
resolved details. Since VDSR and SRGAN are trained on
natural images, they may not capture LR facial patterns
well for face super-resolution. We retrain VDSR and
SRGAN on entire face images for fair comparisons. Zhu
et al. [5] employ a cascaded deep convolutional neural net-
work to hallucinate facial components of LR face images.
Cao et al. [6] exploit a recurrent attention mechanism to
localize and upsample facial regions. Yu and Porikli [4]
use a decoder-encoder-decoder structure to super-resolve

unaligned LR faces. Chen et al. [35] and Yu et al. [36] exploit
the facial structure as a spatial constraint to hallucinate
faces. Lee et al. [40] fuse attribute vectors and LR inputs in
the feature space and then upsample the concatenated
features to obtain HR faces.

4.1 Dataset

We use the Celebrity Face Attributes (CelebA) dataset [65]
to train our network because CelebA dataset contains over
220K face images and also provides 40 binary-value attrib-
utes for each face image. Unlike previous face generation
methods [13], [51], [52], our network focuses on super-
resolving LR faces by exploiting facial attributes. Hence, we
only choose the attributes related to facial details, such as
gender, age and beard information, rather than the attrib-
utes which can be directly extracted from LR faces, such as
hair and skin colors, and are not related to facial details,
such as wearing hats, glasses and earrings. In particular, we
select the 18 attributes from the 40 attributes, including
5 o’clock shadow, arched eyebrow, bags under eyes, big
lips, big nose, bushy eyebrows, double chin, goatee, heavy
makeup, high cheekybone, male, mouth open, mustache,
narrow eyes, no beard, pointy nose, sideburns and young.
In this way, we reduce the potential inconsistency between
visual and semantic information imposed by the supple-
mentary attributes.

When generating the LR and HR face pairs, we select
170K cropped face images from the CelebA dataset, and
then resize them to 128 � 128 pixels as HR images. We man-
ually transform the HR images, including rotations, transla-
tions and scale changes, and then downsample HR images
to 16� 16 pixels to attain their corresponding LR images.
We use 160K LR and HR face pairs and their corresponding
attributes for training, 2K LR and HR image pairs and their
attributes for validation, and 2K LR face images and their
ground-truth attributes for testing.

4.2 Qualitative Comparison with the SoA

Some algorithms [6], [7], [9], [22], [24], [54] need the align-
ments of LR inputs before face super-resolution while
Yu and Porikli’s method [4] and Yu et al.’s method [36]
automatically generate upright HR face images. For a fair
comparison and better illustration, we employ a spatial
transformer network STN0 to align LR faces. The aligned
upright HR ground-truth images are shown for comparison.
As reported in [4], [10], LR faces aligned by STN0 may still
suffer misalignments. Therefore, we employ multiple STNs
in the upsampling network to reduce misalignments similar
to [4], [10]. The only difference between STN0 and STN1 is
that the first MP2 operation in STN1 is removed in STN0

and the input channel is 3.
Bicubic upsampling only interpolates new pixels from

neighboring pixels rather than hallucinating new contents
for new pixels. Furthermore, the resolution of our input face
images is very small, and little information is contained in
the input images. As shown in Figs. 4c, 5c, 6c, and 7c, con-
ventional bicubic interpolation fails to generate facial
details. The upsampled faces also suffer from obvious skew
artifacts. This indicates that it is difficult to align very low-
resolution faces accurately by a single STN0.
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Ma et al. [9] super-resolve HR faces by position patches
from HR exemplar face images. Thus, their method is sensi-
tive to misalignments in LR inputs. As seen in Figs. 4d, 5d,
6d, and 7d, there are obvious blur artifacts along the profiles
of hallucinated faces. In addition, the correspondences
between LR and HR patches become inconsistent as the
upscaling factor increases. Hence, severe blocky artifacts
appear on the boundaries of different patches.

Shi et al. [22] project position-patches into a high-
dimensional kernel space to better represent the non-
linear relationship between exemplary HR patches. Thus,
Shi et al.’s method avoids the assumption of local geometry

consistency between LR and HR patches. However, this
method is also sensitive to misalignments in LR inputs
because it is still based on position-patches. As seen in
Figs. 4e, 5e, 6e, and 7e, the upsampled facial details suffer
from blur artifacts due to the misalignments of LR faces.

Jiang et al. [24] exploit context-patches from HR exem-
plar face images to upsample LR faces, where context-
patches consist of the same position-patch and its neighbor-
ing patches. Moreover, Jiang et al.’s method also employs
a thresholding strategy to select patches and reproduce
learning to enhance the final results, known as TLcR-RL.
Although context-patch based methods can tolerate slight

Fig. 4. Comparison with the state-of-the-arts methods on male images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d)
Results of Ma et al.’s method [9]. (e) Results of Shi et al.’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of Kim et al.’s
method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’s method (CBN) [5]. (j) Results of Cao et al.’s
method [6]. (k) Results of Yu and Porikli’s method (TDAE) [4]. (l) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s method [36].
(n) Results of Lee et al.’s method (AACNN) [40]. (o) Our results.
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misalignments of LR faces, aliasing artifacts appear in the
upsampled HR face images due to the variations of facial
expressions and poses in the HR exemplar dataset, as visible
in Figs. 4f, 5f, 6f, and 7f.

Kim et al. [7] present a deep CNN for generic purpose
super-resolution, known as VDSR. Because VDSR is trained
on natural image patches and does not provide an upscaling
factor of 8�, it cannot capture the global face structure, as
shown in Fig. 1d. We re-train the model with an upscaling
factor of 8� on face images, marked as VDSRy. As shown in
Figs. 4g, 5g, 6g, and 7g, this method also suffers from the
distortion artifacts in the results due to misalignments. Fur-
thermore, since VDSRy is only trained by a pixel-wise ‘2

loss, it outputs overly smoothed results as seen in Figs. 4g,
5g, 6g, and 7g.

Ledig et al. [54] develop a CNN based generic super-
resolution method, dubbed SRGAN. In order to avoid pro-
ducing overly smoothed super-resolved results, SRGAN
employs an adversarial loss [14], [45]. Since original SRGAN
is also trained on generic image patches, we also fine-tune
SRGAN with entire face images for a fair comparison,
named as SRGANy. As seen in Figs. 4h, 5h, 6h, and 7h,
SRGAN is able to capture LR facial patterns and achieves
sharper upsampled results compared to VDSR. However,
misalignments in LR faces result in severe distortions in the
final results.

Fig. 5. Comparison with the state-of-the-arts methods on male images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al.’s method [9]. (e) Results of Shi et al.’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of
Kim et al.’s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’s method (CBN) [5]. (j) Results of
Cao et al.’s method [6]. (k) Results of Yu and Porikli’s method (TDAE) [4]. (l) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al.’s method (AACNN) [40]. (o) Our results.
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Zhu et al. [5] develop a cascaded bi-network (CBN) to
super-resolve very low-resolution face images. CBN first
localizes facial components in LR faces and then super-
resolves facial details by a local network and entire face
images by a global network. As shown in the first and fourth
rows of Fig. 4i, CBN is able to generate HR facial components,
but it also hallucinates feminine facial details in male face
images. For instance, eye lines appear in male faces as seen in
the fourth row of Fig. 4i. Furthermore, CBN fails to super-
resolve faces of senior people, as shown in the first row of
Fig. 6i. As the upscaling factor increases, the facial details in
LR faces become more ambiguous. Therefore, it is difficult to

recover the facial details of senior people, such as wrinkles
and age spotswhich are even hard to observe in LR faces.

Cao et al. [6] propose an attention-aware face hallucina-
tion network. Their network jointly learns an attention
mechanism to focus on local face regions and a local
enhancement network to super-resolve the selected regions.
Because the attention mechanism is learned on aligned
faces, misalignments of LR faces lead to inferior super-
resolution performance, as illustrated in Figs. 4j, 5j, 6j, and
7j. In addition, their method also suffers from obvious
blocky artifacts since some facial regions are not chosen by
the attention mechanism for super-resolution.

Fig. 6. Comparison with the state-of-the-arts methods on female images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al.’s method [9]. (e) Results of Shi et al.’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of
Kim et al.’s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’s method (CBN) [5]. (j) Results of
Cao et al.’s method [6]. (k) Results of Yu and Porikli’s method (TDAE) [4]. (l) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al.’s method (AACNN) [40]. (o) Our results.
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Yu and Porikli [4] exploit a transformative discriminative
autoencoder (TDAE) to upsample very low-resolution face
images. They also employ deconvolutional layers to upsam-
ple LR faces as well as STN layers to align LR faces, but their
discriminative network is only used to force the upsampling
network to produce sharper results without imposing any
high-level semantic information, e.g., facial attributes, in
super-resolution. As visible in Figs. 4k, 5k. 6k, and 7k, their
method also reverses the genders of the upsampled faces as
well as suffers from facial rejuvenation.

Chen et al. [35] develop two stage networks to super-
resolve HR faces by exploiting face priors, named FSRNet.

FSRNet first upsamples low-frequency components of LR
faces by its first-stage network and then explores the face
structure of upsampled faces as face priors to enhance facial
details by its second-stage network. Although their method
does not require alignment of LR faces, we apply their
method to the LR faces aligned by STN0 for comparisons.
Since aligning LR faces may introduce extra blurriness and
skew artifacts, FSRNet may fail to localize facial components
fromupsampled overly-smoothHR faces. Thus, FSRNet pro-
duces blurry HR faces, as shown in Figs. 4l, 5l, 6l, and 7l.

Yu et al. [36] present a facial component heatmap guided
upsampling network. This method aligns feature maps by

Fig. 7. Comparison with the state-of-the-arts methods on female images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al.’s method [9]. (e) Results of Shi et al.’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of
Kim et al.’s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’s method (CBN) [5]. (j) Results of
Cao et al.’s method [6]. (k) Results of Yu and Porikli’s method (TDAE) [4]. (l) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al.’s method (AACNN) [40]. (o) Our results.
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STN layers and then estimates the facial component heat-
maps from the aligned feature maps rather than coarsely
upsampled HR face images in [35]. Since the attributes are
not embedded in this method, their super-resolved results
may exhibit facial attributes different from the HR ground-
truths. For instance, the upsampled mouths are open while
the ground-truth ones are closed, as seen in the second,
third and last rows of Fig. 5m. As visible in the second row
of Fig. 7m, the upsampled mouth is different from the HR
ground-truth one. The hallucinated eyes are almost closed
while the ground-truth ones are open, as visible in the first
row of Fig. 6m.

Lee et al. [40] introduce an attribute augmented convolu-
tional neural network (AACNN) to super-resolve LR faces.
Since AACNN is trained on aligned LR and HR face pairs,
AACNN is sensitive to misalignments of LR faces. In addi-
tion, there is no mechanism to ensure the embedding of
attribute information. Thus, AACNN may not fully exploit
the attribute information to reduce the ambiguity of face
super-resolution, as shown in Figs. 4n, 5n, 6n, and 7n.

In contrast, our method is able to reconstruct authentic
facial details as shown in Figs. 4o, 5o, 6o, and 7o. Even
though there are different poses, facial expressions and ages
in the input faces, our method still produces visually pleas-
ant HR faces which are similar to the ground-truth faces
without suffering gender reversal and facial rejuvenation.
For instance, we can super-resolve faces of senior persons
as illustrated in the second row of Fig. 4o and the first rows
of Fig. 6o as well as the child face in the last row of Fig. 5o.

Note that, FSRNet and CBN do not require LR faces to be
aligned beforehand. The inferior super-resolution perfor-
mance may be caused by the imperfect alignment of LR
faces. Therefore, in Fig. 8, we also demonstrate the super-
resolution results when FSRNet and CBN are directly
applied to upsample unaligned LR faces. As seen in Fig. 8,
FSRNet and CBN may still fail to localize facial components
and then output artifacts in the final results. Those artifacts

may handicap the process of aligning the upsampled HR
face images. On the contrary, our method not only generates
authentic HR faces but also aligns them to the upright
position.

4.3 Quantitative Comparison with the SoA

We quantitatively measure the performance of all the meth-
ods on the entire test dataset by the average Peak Single-to-
Noise Ratio (PSNR) and Structural SIMilarity (SSIM) scores.
Table 1 demonstrates that our method also achieves supe-
rior performance in comparison to other methods.

As indicated in Table 1, after retraining VDSR and
SRGAN with face images, they achieve higher PSNRs but
still output inferior quantitative results compared with our
results. Yu et al.’s method [36] and TDAE [4] also employ
multiple STNs to align LR face images and achieve the sec-
ond and third best results respectively. Note that [36]
exploits a multi-task network to super-resolve face images
while TDAE [4] employs three networks, which are much
larger than our network. This phenomenon also indicates
that the ambiguity is significantly reduced by imposing
attribute information into the super-resolution procedure
rather than by increasing the capacity of a neural network.
Therefore, our method is able to achieve better quantitative
results.

5 DISCUSSIONS

5.1 Attribute Manipulation in Super-Resolution

Given an LR face image, previous deep neural network
based face hallucination methods [3], [4], [5] only produce a
certain HR face image. There is no freedom for those meth-
ods to fine-tune the final results. In contrast, our method
can output different super-resolved results by adjusting the
attribute vectors. As shown in Fig. 9, by changing the gen-
der attribute we can hallucinate face images either from
male to female or from female to male. Our method can
manipulate the age of the upsampled faces, i.e., more wrin-
kles and age spots, by changing the age attribute, as seen in
Fig. 9b. Because gender and age information may become
ambiguous in LR face images, combining that semantic
information in super-resolution can produce more accurate
results. In addition, after obtaining super-resolved faces,

Fig. 8. Results of the state-of-the-arts methods on unaligned LR face
images. (a) Unaligned LR inputs. (b) Original HR images. (c) Results of
Zhu et al.’s method (CBN) [5]. (d) Results of Chen et al.’s method
(FSRNet) [35]. (e) Our results.

TABLE 1
Quantitative Evaluations on the Test Dataset

Method PSNR SSIM

Bicubic 19.23 0.56
Ma et al. [9] 19.11 0.54
Shi et al. [22] 19.12 0.55
TLcR-RL [24] 19.18 0.56
VDSR [7] 19.58 0.57
VDSRy [7] 20.12 0.57
SRGANy [54] 19.06 0.57
CBN [5] 18.77 0.54
Cao et al. [6] 20.09 0.58
TDAE [4] 20.40 0.57
FSRNet [35] 19.25 0.54
Yu et al. [36] 21.25 0.60
AACNN [40] 19.33 0.54
Ours 21.82 0.62
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our method is still able to post-edit the upsampled facial
details in accordance with the desired attributes. For
instance, our method removes the eye lines and shadows in
Fig. 9c, makes noses bigger in Fig. 9d, removes and adds
beard in Fig. 9e, opens and closes eyes in Fig. 9f, makes eye-
brows bushy in Fig. 9g, makes lips bigger in Fig. 9h as well
as opens and closes mouths in Fig. 9i by manipulating
the corresponding attribute vectors. Therefore, infusing

semantic information into LR face images significantly
increases the flexibility of our method.

To demonstrate our upsampling network is able to
embed attributes into the upsampled HR faces successfully,
we choose 9 different attributes, i.e., gender, age, makeup,
big nose, beard, open eyes, bushy eyebrows, big lips and
open mouth, and train a attribute classifier for each attri-
bute. Note that, some of our selected 18 attributes are

Fig. 9. Our method can fine-tune the super-resolved results by adjusting the attributes. From top to bottom: the LR input faces, the HR ground-truth
faces, our results with ground-truth attributes, our results by adjusting attributes. (a) Reversing genders of super-resolved faces. (b) Aging
upsampled faces. (c) Removing makeups. (d) Changing noses. (The first two columns: making noses pointy, and the last two columns: making noses
bigger.) (e) Adding and removing beard. (f) Narrowing and opening eyes. (g) Making and removing bushy Eyebrows. (h) Making lips bigger. (i) Open-
ing and closing mouths.
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coupled together, such as goatee and beard information,
and some attributes may not be always consistent with
human observation and are even hard to distinguish in
upsampled faces in our experiments, such as eye bags.
Therefore, we conduct the quantitative evaluations on the
above 9 attributes as visible in Fig. 9 rather than all the
selected attributes. By increasing and decreasing the corre-
sponding attribute values, the true positive accuracies are
changed accordingly, as illustrated in Table 2. This indicates
that the attribute information has been successfully embed-
ded in super-resolution.

5.2 Learn to Encode Attribute Vectors in
Hallucination

Since our network directly accepts binary-value attributes,
an option to improve the embedding might be using a
shared CNN branch ENs to encode attribute vectors. In the
training stage, the encoding branch ENs will be updated as
well in order to embed attributes into the upsampling net-
work. Because the output of ENs, i.e., the embedded attri-
bute vector, is the input of both the upsampling network
and the discriminative network, the ‘2 and perceptual losses
from the upsampling network U and the discriminative loss
from the discriminative network D are used to update ENs.
Therefore, although the upsampling network and the dis-
criminative network are updated alternatingly, ENs is
updated in every iteration.

In training our discriminative network, the discrimina-
tive labels for the faces upsampled by U are set to 0 regard-
less of the attribute information, the labels for real faces
with matched attributes are set to 1, and the labels for real
faces with mismatched attributes are set to 0. Different from
the previous training protocol [3], [4], the discriminative
loss is not only used to update the discriminative network
but also employed to update the embedding branch ENs.
We only use one binary cross-entropy loss to update the dis-
criminative network D, but the training errors of D may
come from either the face images or the mismatched attrib-
utes. Since the binary cross-entropy loss is not able to distin-
guish whether the faces are hallucinated or the attributes
does not match the faces, it may cause ambiguity in the pro-
cedure of backpropagation.

On the other hand, in training our upsampling network,
only the upsampled faces with their corresponding ground-
truth attributes are fed into the discriminative network and
the discriminative labels are set to 1. Note that, in training
D, the discriminative labels for super-resolved faces with
their attributes should be 1 while in training U, the labels
are set to 0. Similar to previous works [3], [4], [10], the dis-
criminative loss should be only used to update the upsam-
pling network to make the super-resolved faces realistic,
but here it is also used to update the encoding network ENs.
Thus, it is difficult for ENs to learn a consistent encoder due

to the contradicted discriminative labels in training D and
U. Therefore, the super-resolution performance using ENs

decreases 1.79 dB as indicated in Table 3 and the halluci-
nated faces suffer from obvious artifacts, as seen in Fig. 10c.
Therefore, we directly feed a binary-value attribute vector
into our upsampling and discriminative network.

5.3 Performance with/without Autoencoder

As shown in Fig. 3c, we demonstrate that it is not suitable to
concatenate high-level semantic information with low-level
image pixels directly. Specifically, we remove the autoen-
coder, replicate the attribute vector to the image size, and
then concatenate the replicated attributes with the input LR
image. In this way, all semantic labels will be applied to the
whole images by the low-level convolutional filters. How-
ever, low-level filters are mainly responsible to extract
image edges or corners [63]. It is unsuitable to employ low-
level filters to fuse high-level semantic information and
low-level visual information. This is also verified by the
quantitative result, donated as woAE, in Table 3.

On the contrary, we first encode the LR input faces by an
encoder and then fuse the high-level semantic information,
i.e., attribute vectors, with the high-level feature maps
extracted by the encoder. In this manner, the attribute labels
are better associated with the feature maps qualitatively
and quantitatively, as shown in Fig 3h and Table 3.

5.4 Performance with/without Skip-Connections

As shown in Fig. 2, we also employ skip-connections to pass
low-frequency components of LR inputs to the decoder. In
this fashion, we only focus on embedding the supplemen-
tary attributes into high-frequency facial details as well as
preserve spatial information of LR input faces. Here, the
low-frequency components are not strict low-frequency
components of LR faces but relatively low-frequency com-
pared to the components in the residual branch, i.e., high-
frequency components. Without using skip-connections, the
network will fuse the facial attributes with all the frequency
components of LR faces. As seen in Fig. 3d, the hallucinated
faces suffer from obvious artifacts at the smooth regions
after removing the skip-connections. Therefore, the attribute
information should be fused into high-frequency compo-
nents of LR faces rather than low-frequency ones. We also
demonstrate the quantitative result without using the skip-

TABLE 2
Classification Results Impacted by Tuning Attributes

Attributes Male Young Makeup Big nose Beard Narrow eyes Bushy eyebrows Big lips Mouth open

GT Attr. Acc. 100% 100% 91% 42% 100% 67% 88% 56% 100%
Increased Attr. Acc. 100% 100% 100% 100% 100% 100% 100% 94% 100%
Decreased Attr. Acc. 0% 0% 2.9% 8.3% 0% 0% 0% 0% 0%

TABLE 3
Ablation Study on Our Proposed Network

ENs wrAttr inAttr woAttr woAE noSkip stdDiscr Ours

PSNR 20.03 20.42 21.43 21.64 21.03 21.21 21.65 21.82

SSIM 0.55 0.53 0.60 0.60 0.58 0.58 0.60 0.62
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connections, denoted as noSkip, in Table 3. As indicated in
Table 3, with the help of the skip-connections, our super-
resolution performance increases 0.60 dB in PSNR.

5.5 Performance with Inaccurate Attributes

When super-resolving very low-resolution face images, we
may not always obtain all the 18 ground-truth attributes.
Therefore, we may use inaccurate attribute information in
face hallucination. In this case, we set undetermined attrib-
utes to 0.5 as neutral attributes in super-resolution because
an attribute is set either 1 or 0 in training. In an extreme case,
we do not know any information about attributes. Hence, we
use the neutral value for all the attributes in super-resolution,
marked as inAttr, and the quantitative result is shown in
Table 3. Fig. 10d also illustrates that our network can still
generate high-quality results with inaccurate attributes.

Another case is that completely wrong attributes may be
assigned to a given input, marked as wrAttr. Here, we
reverse all the ground-truth attributes to their opposite val-
ues as completely wrong attributes. For instance, we change
an attribute value 1 to 0 or vice verse. Notice that, some
attributes are coupled together, such as gender and beard
attributes. Thus, the wrong attributes are not only inconsis-
tent with LR faces but also may contradict each other.
Fig. 10e shows that the super-resolved face images with
completely wrong attributes, and Table 3 demonstrates the
quantitative results of using completely wrong attributes.
As demonstrated in Table 3, using completely wrong attrib-
utes degrades the face super-resolution performance. Fur-
thermore, the upsampled HR face images are different from
their corresponding HR ground-truth ones, as visible in
Fig. 10e. Therefore, when an attribute is uncertain, using
neural attributes is more preferable to achieve better face
hallucination performance.

5.6 Performance with/without Attribute Embedding

To demonstrate the influence of embedding attributes in face
hallucination, we remove the branches of feeding attributes

into U and D for comparisons, and denote this variant as
woAttr. As shown in Fig. 10f, the final results upsampled by
woAttr suffer from gender reversal and expression changes.
The average PSNR without embedding attributes decreases
0.18 dB, as indicated in Table 3. Furthermore, we also employ
two pretrained attribute classifiers, i.e., gender and age, to
recognize the attributes recovered by our network and
woAttr. For the age classification results, the error rate of
our proposed network is 0 while the error rate of woAttr is
23.4 percent. For the gender classification results, the error
rate of our proposed network is 0 while the error rate of
woAttr is 6 percent. These experiments demonstrate that our
method effectively reduces ambiguity in face hallucination
by embedding supplementary attributes.

5.7 Impact of Embedding Layers in D
As mentioned in Section 3.2, we embed attribute vectors
into the third layer of the discriminative network. Here, we
also demonstrate the quantitative results of embedding
attributes into different layers of the discriminative net-
work, (i.e., 1st, 2nd, 3rd and 4th convolutional layers). As
reported in our previous work [10], overly smoothed
upsampled results tend to achieve higher PSNR but their
visual quality is inferior. Therefore, we compare the quanti-
tative results when these variants generate similar visual
quality results. As shown in Table 4, we achieve the best
performance when embedding attribute vectors into the
third layer ofD.

Lee et al. [40] employ a vanilla discriminative network to
distinguish whether the input faces are real or generated. In
this manner, the discriminative network is not used to

Fig. 10. Discussions on the variants of our network. (a) 16� 16 LR input images. (b) 128� 128 HR ground-truth images. (c) Results of using a shared
CNN branch ENs to encode attributes in super-resolution. (d) Results of using all neutral attributes. (e) Results of using completely wrong attributes.
(f) Results without embedding attribute information. (g) Results of using a standard discriminative network. (h) Our results.

TABLE 4
Embedding Attributes into Different Layers of D

Layers D1 D2 D3 D4

PSNR 21.59 21.76 21.82 21.63
SSIM 0.62 0.62 0.62 0.61
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guarantee that the attributes are correctly embedded. Simi-
lar to the work [40], we replace our conditional discrimina-
tive network with a standard discriminative network, and
then retrain our upsampling, marked as stdDiscr. As seen
in the second row of Fig. 10g, the upsampled face has been
rejuvenated. Since there is no mechanism to exam whether
attribute information is fully embedded in the upsampled
face images, the upsampled results may still suffer from
ambiguity. Thus, artifacts appear in the super-resolved
faces, as visible in Fig. 10g. As indicated in Table 3, using
our conditional discriminative network can obtain higher
PSNRs compared to employing a standard discriminative
network. This also implies that a standard discriminative
network cannot force our upsampling network to embed
the facial attribute information.

5.8 Impact of Different Losses

As seen in Fig. 3, we only show the impact of different
losses on the visual results. In Table 5, we also show the
quantitative results of our network trained by using differ-
ent losses. When only employing the pixel-wise ‘2 loss, the
average PSNR is higher but the visual results suffer from
severe blurriness, as shown in Fig. 3e. To avoid generating
overly smoothed results, the feature-wise ‘2 loss is used in
training the network. Due to the lack of the guidance of
high-level semantic information in super-resolution, the
network trained by using the pixel-wise and feature-wise
losses still suffers from notorious ambiguity, such as gender
reversal or facial rejuvenation. Using the discriminative loss
Ldis and the pixel-wise ‘2 loss is able to embed the attribute
information in the upsampled face images, but the facial
characteristics may not be fully captured. Thus, the upsam-
pling network generates ringing artifacts to mimic facial
details, as shown in Fig. 3g. By employing these three losses
altogether, our network is able to achieve the best visual
quality. Similar to the phenomenon mentioned in our
previous work [3], using the discriminative loss is a trade-
off between the quantitative performance and the visual
quality. Therefore, we set the weight for the discriminative
loss to 0.001.

6 CONCLUSIONS

We introduced an attribute embedded discriminative net-
work to super-resolve very low-resolution (16 � 16 pixels)
unaligned face images by a large magnification factor 8� in
an end-to-end fashion. With the help of the conditional dis-
criminative network, our network successfully embeds
facial attribute information into the upsampling network to
reduce the inherit ambiguity in super-resolution. After
training, our network is not only able to super-resolve LR
faces but also fine-tune the upsampled results by adjusting
the attribute information. In this manner, our network can
generate HR face images much closer to their corresponding

ground-truth ones, thus achieving superior face hallucina-
tion performance.
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please visit our Digital Library at www.computer.org/csdl.
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